Characterizations for the fractional maximal operators on Carleson curves in local generalized Morrey spaces

Hatice Armutcu ${ }^{1, *}$, Ahmet Eroglu ${ }^{2}$ and Fatai Isayev ${ }^{3}$
${ }^{1}$ Gebze Technical University, Kocaeli, Turkey
${ }^{2}$ Omer Halisdemir University, Department of Mathematics, Nigde, Turkey
${ }^{3}$ Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan
* Corresponding author
E-mail: haticexarmutcu@gmail.com ${ }^{1}$, aeroglu@ohu.edu.tr ${ }^{2}$, isayevfatai@yahoo.com ${ }^{3}$

Abstract

In this paper we study the fractional maximal operator \mathcal{M}^{α} in the local generalized Morrey space $L M_{p, \varphi}^{\left\{t_{0}\right\}}(\Gamma)$ and the generalized Morrey space $M_{p, \varphi}(\Gamma)$ defined on Carleson curves Γ, respectively. For the operator \mathcal{M}^{α} we shall give a characterization the strong and weak Spanne-Guliyev type boundedness on $L M_{p, \varphi}^{\left\{t_{0}\right\}}(\Gamma)$ and the strong and weak Adams-Guliyev type boundedness on $M_{p, \varphi}(\Gamma)$.

2010 Mathematics Subject Classification. 42B20. 42B25, 42B35
Keywords. Carleson curve, local generalized Morrey space, fractional maximal operator.

1 Introduction

Morrey spaces were introduced by C. B. Morrey [25] in 1938 in connection with certain problems in elliptic partial differential equations and calculus of variations. Later, Morrey spaces found important applications to Navier-Stokes and Schrödinger equations, elliptic problems with discontinuous coefficients, and potential theory.

The main purpose of this paper is to establish the boundedness of fractional maximal operator \mathcal{M}^{α} in local generalized Morrey spaces $L M_{p, \varphi}^{\left\{x_{0}\right\}}(\Gamma)$ defined on Carleson curves Γ. We study SpanneGuliyev type boundedness of the operator \mathcal{M}^{α} from $L M_{p, \varphi_{1}}^{\left\{x_{0}\right\}}(\Gamma)$ to $L M_{q, \varphi_{2}}^{\left\{x_{0}\right\}}(\Gamma), 1<p<q<\infty$, and from the space $L M_{1, \varphi_{1}}^{\left\{x_{0}\right\}}(\Gamma)$ to the weak space $\operatorname{WLM}_{q, \varphi_{2}}^{\left\{x_{2}\right\}}(\Gamma), 1<q<\infty$. Also we study Adams-Guliyev type boundedness of the operator \mathcal{M}^{α} from generalized Morrey spaces $M_{p, \varphi^{\frac{1}{p}}}(\Gamma)$ to $M_{q, \varphi^{\frac{1}{q}}}(\Gamma), 1<p<q<\infty$, and from the space $M_{1, \varphi}(\Gamma)$ to the weak space $W M_{q, \varphi^{\frac{1}{q}}}^{p, \varphi^{\frac{1}{p}}}(\Gamma)$, $1<q<\infty$. We shall give a characterization for the Spanne-Guliyev and Adams-Guliyev type boundedness of the operator \mathcal{M}^{α} on the generalized Morrey spaces, including weak versions.

By $A \lesssim B$ we mean that $A \leq C B$ with some positive constant C independent of appropriate quantities. If $A \lesssim B$ and $B \lesssim A$, we write $A \approx B$ and say that A and B are equivalent.

2 Preliminaries

Let $\Gamma=\{t \in \mathbb{C}: t=t(s), 0 \leq s \leq l \leq \infty\}$ be a rectifiable Jordan curve in the complex plane \mathbb{C} with arc-length measure $\nu(t)=s$, here $l=\nu \Gamma=$ lengths of Γ. We denote

$$
\Gamma(t, r)=\Gamma \cap B(t, r), t \in \Gamma, r>0,
$$

where $B(t, r)=\{z \in \mathbb{C}:|z-t|<r\}$.
A rectifiable Jordan curve Γ is called a Carleson curve if the condition

$$
\nu \Gamma(t, r) \leq c_{0} r
$$

holds for all $t \in \Gamma$ and $r>0$, where the constant $c_{0}>0$ does not depend on t and r. Let $L_{p}(\Gamma)$, $1 \leq p<\infty$ be the space of measurable functions on Γ with finite norm

$$
\|f\|_{L_{p}(\Gamma)}=\left(\int_{\Gamma}|f(t)|^{p} d \nu(t)\right)^{1 / p}
$$

Definition 2.1. Let $1 \leq p<\infty, 0 \leq \lambda \leq 1,[r]_{1}=\min \{1, r\}$. We denote by $L_{p, \lambda}(\Gamma)$ the Morrey space, and by $\widetilde{L}_{p, \lambda}(\Gamma)$ the modified Morrey space, the set of locally integrable functions f on Γ with the finite norms

$$
\|f\|_{L_{p, \lambda}(\Gamma)}=\sup _{t \in \Gamma, r>0} r^{-\frac{\lambda}{p}}\|f\|_{L_{p}(\Gamma(t, r))}, \quad\|f\|_{\tilde{L}_{p, \lambda}(\Gamma)}=\sup _{t \in \Gamma, r>0}[r]_{1}^{-\frac{\lambda}{p}}\|f\|_{L_{p}(\Gamma(t, r))}
$$

respectively.
Note that $($ see $[13,15]) L_{p, 0}(\Gamma)=\widetilde{L}_{p, 0}(\Gamma)=L_{p}(\Gamma)$,

$$
\widetilde{L}_{p, \lambda}(\Gamma)=L_{p, \lambda}(\Gamma) \cap L_{p}(\Gamma) \quad \text { and } \quad\|f\|_{\tilde{L}_{p, \lambda}(\Gamma)}=\max \left\{\|f\|_{L_{p, \lambda}(\Gamma)},\|f\|_{L_{p}(\Gamma)}\right\}
$$

and if $\lambda<0$ or $\lambda>1$, then $L_{p, \lambda}(\Gamma)=\widetilde{L}_{p, \lambda}(\Gamma)=\Theta$, where Θ is the set of all functions equivalent to 0 on Γ.

We denote by $W L_{p, \lambda}(\Gamma)$ the weak Morrey space, and by $W \widetilde{L}_{p, \lambda}(\Gamma)$ the modified Morrey space, as the set of locally integrable functions f on Γ with finite norms

$$
\begin{aligned}
& \|f\|_{W L_{p, \lambda}(\Gamma)}=\sup _{\beta>0} \beta \sup _{t \in \Gamma, r>0}\left(r^{-\lambda} \int_{\{\tau \in \Gamma(t, r):|f(\tau)|>\beta\}} d \nu(\tau)\right)^{1 / p}, \\
& \|f\|_{W \tilde{L}_{p, \lambda}(\Gamma)}=\sup _{\beta>0} \beta \sup _{t \in \Gamma, r>0}\left([r]_{1}^{-\lambda} \int_{\{\tau \in \Gamma(t, r):|f(\tau)|>\beta\}} d \nu(\tau)\right)^{1 / p} .
\end{aligned}
$$

Let $f \in L_{1}^{\text {loc }}(\Gamma)$. The fractional maximal operator \mathcal{M}^{α} and the potential operator \mathcal{I}^{α} on Γ are defined by

$$
\mathcal{M}^{\alpha} f(t)=\sup _{t>0}(\nu \Gamma(t, r))^{-1+\alpha} \int_{\Gamma(t, r)}|f(\tau)| d \nu(\tau)
$$

and

$$
\mathcal{I}^{\alpha} f(t)=\int_{\Gamma} \frac{f(\tau) d \nu(\tau)}{|t-\tau|^{1-\alpha}}, \quad 0<\alpha<1
$$

respectively.
Fractional maximal and potential operators in various spaces defined on Carleson curves has been widely studied by many authors (see, for example [3, 4, 19, 20, 21, 22, 23, 24, 26]).
N. Samko [26] studied the boundedness of the maximal operator $\mathcal{M}=\mathcal{M}^{0}$ defined on quasimetric measure spaces, in particular on Carleson curves in Morrey spaces $L_{p, \lambda}(\Gamma)$:
Theorem A. Let Γ be a Carleson curve, $1<p<\infty$ and $0 \leq \lambda \leq 1$. Then \mathcal{M} is bounded from $L_{p, \lambda}(\Gamma)$ to $L_{p, \lambda}(\Gamma)$.
V. Kokilashvili and A. Meskhi [22] studied the boundedness of the operators \mathcal{M}^{α} and \mathcal{I}^{α} defined on quasimetric measure spaces, in particular on Carleson curves in Morrey spaces and proved the following:
Theorem B. Let Γ be a Carleson curve, $1<p<q<\infty, 0<\alpha<1,0<\lambda_{1}<\frac{p}{q}$, $\frac{\lambda_{1}}{p}=\frac{\lambda_{2}}{q}$ and $\frac{1}{p}-\frac{1}{q}=\alpha$. Then the operators \mathcal{M}^{α} and \mathcal{I}^{α} are bounded from the spaces $L_{p, \lambda_{1}}(\Gamma)$ to $L_{q, \lambda_{2}}(\Gamma)$.

The following Adams boundedness (see [1]) of the operators \mathcal{M}^{α} and \mathcal{I}^{α} in Morrey space defined on Carleson curves was proved in [10].
Theorem C. Let Γ be a Carleson curve, $0<\alpha<1,0 \leq \lambda<1-\alpha$ and $1 \leq p<\frac{1-\lambda}{\alpha}$.

1) If $1<p<\frac{1-\lambda}{\alpha}$, then the condition $\frac{1}{p}-\frac{1}{q}=\frac{\alpha}{1-\lambda}$ is sufficient and in the case of infinite curve also necessary for the boundedness of the operators \mathcal{M}^{α} and \mathcal{I}^{α} from $L_{p, \lambda}(\Gamma)$ to $L_{q, \lambda}(\Gamma)$.
2) If $p=1$, then the condition $1-\frac{1}{q}=\frac{\alpha}{1-\lambda}$ is sufficient and in the case of infinite curve also necessary for the boundedness of the operators \mathcal{M}^{α} and \mathcal{I}^{α} from $L_{1, \lambda}(\Gamma)$ to $W L_{q, \lambda}(\Gamma)$.

The following Adams boundedness of the operators \mathcal{M}^{α} and \mathcal{I}^{α} in modified Morrey space $\widetilde{L}_{p, \lambda}(\Gamma)$ defined on Carleson curves was proved in [13], see also [15].
Theorem D. Let Γ be a Carleson curve, $0<\alpha<1,0 \leq \lambda<1-\alpha$ and $1 \leq p<\frac{1-\lambda}{\alpha}$.

1) If $1<p<\frac{1-\lambda}{\alpha}$, then the condition $\alpha \leq \frac{1}{p}-\frac{1}{q} \leq \frac{\alpha}{1-\lambda}$ is sufficient and in the case of infinite curve also necessary for the boundedness of the operators \mathcal{M}^{α} and \mathcal{I}^{α} from $\widetilde{L}_{p, \lambda}(\Gamma)$ to $\widetilde{L}_{q, \lambda}(\Gamma)$.
2) If $p=1$, then the condition $\alpha \leq 1-\frac{1}{q} \leq \frac{\alpha}{1-\lambda}$ is sufficient and in the case of infinite curve also necessary for the operators \mathcal{M}^{α} and \mathcal{I}^{α} from $\widetilde{L}_{1, \lambda}(\Gamma)$ to $W \widetilde{L}_{q, \lambda}(\Gamma)$.

3 Local generalized Morrey spaces

We find it convenient to define the local generalized Morrey spaces in the form as follows, see [16].
Definition 3.1. Let $1 \leq p<\infty$ and $\varphi(t, r)$ be a positive measurable function on $\Gamma \times(0, \infty)$. Fixed $t_{0} \in \Gamma$, we denote by $L M_{p, \varphi}^{\left\{t_{0}\right\}}(\Gamma)\left(W L M_{p, \varphi}^{\left\{x_{0}\right\}}(\Gamma)\right)$ the local generalized Morrey space (the weak local generalized Morrey space), the space of all functions $f \in L_{p}^{\text {loc }}(\Gamma)$ with finite quasinorm

$$
\begin{aligned}
\|f\|_{L M_{p, \varphi}^{\left\{t_{0}\right\}}(\Gamma)} & =\sup _{r>0} \frac{1}{\varphi\left(t_{0}, r\right)} \frac{1}{\left(\nu \Gamma\left(t_{0}, r\right)\right)^{\frac{1}{p}}}\|f\|_{L_{p}\left(\Gamma\left(t_{0}, r\right)\right)} \\
\left(\|f\|_{W L M_{p, \varphi}^{\left\{t_{0}\right\}}(\Gamma)}\right. & \left.=\sup _{r>0} \frac{1}{\varphi\left(t_{0}, r\right)} \frac{1}{\left(\nu \Gamma\left(t_{0}, r\right)\right)^{\frac{1}{p}}}\|f\|_{W L_{p}\left(\Gamma\left(t_{0}, r\right)\right)}\right) .
\end{aligned}
$$

Definition 3.2. Let $1 \leq p<\infty$ and $\varphi(t, r)$ be a positive measurable function on $\Gamma \times(0, \infty)$. The generalized Morrey space $M_{p, \varphi}(\Gamma)$ is defined of all functions $f \in L_{p}^{\text {loc }}(\Gamma)$ by the finite norm

$$
\|f\|_{M_{p, \varphi}}=\sup _{t \in \Gamma, r>0} \frac{1}{\varphi(t, r)} \frac{1}{(\nu \Gamma(t, r))^{\frac{1}{p}}}\|f\|_{L_{p}(\Gamma(t, r))}
$$

Also the weak generalized Morrey space $W M_{p, \varphi}(\Gamma)$ is defined of all functions $f \in L_{p}^{l o c}(\Gamma)$ by the finite norm

$$
\|f\|_{W M_{p, \varphi}}=\sup _{t \in \Gamma, r>0} \frac{1}{\varphi(t, r)} \frac{1}{(\nu \Gamma(t, r))^{\frac{1}{p}}}\|f\|_{W L_{p}(\Gamma(t, r))}
$$

It is natural, first of all, to find conditions ensuring that the spaces $L M_{p, \varphi}^{\left\{t_{0}\right\}}(\Gamma)$ and $M_{p, \varphi}(\Gamma)$ are nontrivial, that is consist not only of functions equivalent to 0 on Γ.

Lemma 3.1. Let $t_{0} \in \Gamma$ and $\varphi(t, r)$ be a positive measurable function on $\Gamma \times(0, \infty)$. If

$$
\begin{equation*}
\sup _{r<\tau<\infty} \frac{1}{\varphi\left(t_{0}, r\right)} \frac{1}{\left(\nu \Gamma\left(t_{0}, r\right)\right)^{\frac{1}{p}}}=\infty \quad \text { for some } r>0 \tag{3.1}
\end{equation*}
$$

then $L M_{p, \varphi}^{\left\{t_{0}\right\}}(\Gamma)=\Theta$.
Proof. Let (3.1) be satisfied and f be not equivalent to zero. Then $\|f\|_{L_{p}\left(\Gamma\left(t_{0}, r\right)\right)}>0$ for some $r>0$, hence

$$
\begin{aligned}
\|f\|_{L M_{p, \varphi}^{\left\{t_{0}\right\}}} & \geq \sup _{r<\tau<\infty} \frac{1}{\varphi\left(t_{0}, \tau\right)} \frac{1}{\left(\nu \Gamma\left(t_{0}, \tau\right)\right)^{\frac{1}{p}}}\|f\|_{L_{p}\left(\Gamma\left(t_{0}, \tau\right)\right)} \\
& \geq\|f\|_{L_{p}\left(\Gamma\left(t_{0}, r\right)\right)} \sup _{r<\tau<\infty} \frac{1}{\varphi\left(t_{0}, \tau\right)} \frac{1}{\left(\nu \Gamma\left(t_{0}, \tau\right)\right)^{\frac{1}{p}}} .
\end{aligned}
$$

Therefore $\|f\|_{L M_{p, \varphi}^{\left\{t_{0}\right\}}}=\infty$.
Q.E.D.

Remark 3.3. We denote by $\Omega_{p, l o c}$ the sets of all positive measurable functions φ on $\Gamma \times(0, \infty)$ such that for all $r>0$,

$$
\left\|\frac{1}{\varphi\left(t_{0}, \tau\right)} \frac{1}{\left(\nu \Gamma\left(t_{0}, \tau\right)\right)^{\frac{1}{p}}}\right\|_{L_{\infty}(r, \infty)}<\infty .
$$

In what follows, keeping in mind Lemma 3.1, for the non-triviality of the space $L M_{p, \varphi}^{\left\{t_{0}\right\}}(\Gamma)$ we always assume that $\varphi \in \Omega_{p, l o c}$.

Lemma 3.2. Let $\varphi(t, r)$ be a positive measurable function on $\Gamma \times(0, \infty)$.
(i) If

$$
\begin{equation*}
\sup _{r<\tau<\infty} \frac{1}{\varphi(t, \tau)} \frac{1}{(\nu \Gamma(t, \tau))^{\frac{1}{p}}}=\infty \quad \text { for some } r>0 \quad \text { and for all } t \in \Gamma, \tag{3.2}
\end{equation*}
$$

then $M_{p, \varphi}(\Gamma)=\Theta$.
(ii) If

$$
\begin{equation*}
\sup _{0<\tau<r} \varphi(t, \tau)^{-1}=\infty \quad \text { for some } r>0 \text { and for all } t \in \Gamma, \tag{3.3}
\end{equation*}
$$

then $M_{p, \varphi}(\Gamma)=\Theta$.

Proof. (i) Let (3.2) be satisfied and f be not equivalent to zero. Then $\sup _{t \in \Gamma}\|f\|_{L_{p}(\Gamma(t, \tau))}>0$ for some $r>0$, hence

$$
\begin{aligned}
\|f\|_{M_{p, \varphi}} & \geq \sup _{t \in \Gamma} \sup _{r<\tau<\infty} \frac{1}{\varphi(t, \tau)} \frac{1}{(\nu \Gamma(t, \tau))^{\frac{1}{p}}}\|f\|_{L_{p}(\Gamma(t, \tau))} \\
& \geq \sup _{t \in \Gamma}\|f\|_{L_{p}(\Gamma(t, \tau))} \sup _{r<\tau<\infty} \frac{1}{\varphi(t, \tau)} \frac{1}{(\nu \Gamma(t, \tau))^{\frac{1}{p}}}
\end{aligned}
$$

Therefore $\|f\|_{M_{p, \varphi}}=\infty$.
(ii) Let $f \in M_{p, \varphi}(\Gamma)$ and (3.3) be satisfied. Then there are two possibilities:

Case 1: $\sup _{0<\tau<r} \varphi(t, \tau)^{-1}=\infty$ for all $r>0$.
Case 2: $\sup _{0<\tau<r} \varphi(t, \tau)^{-1}<\infty$ for some $s \in(0, r)$.
For Case 1 , by Lebesgue differentiation theorem, for almost all $t \in \Gamma$,

$$
\begin{equation*}
\lim _{r \rightarrow 0+} \frac{\left\|f \chi_{\Gamma(t, r)}\right\|_{L_{p}}}{\left\|\chi_{\Gamma(t, r)}\right\|_{L_{p}}}=|f(t)| . \tag{3.4}
\end{equation*}
$$

We claim that $f(t)=0$ for all those t. Indeed, fix t and assume $|f(t)|>0$. Then by (3.4) there exists $t_{0}>0$ such that

$$
\frac{1}{(\nu \Gamma(t, \tau))^{\frac{1}{p}}}\|f\|_{L_{p}(\Gamma(t, \tau))} \geq 2^{-1} c_{2}^{\frac{1}{p}}|f(t)|
$$

for all $0<\tau \leq t_{0}$. Consequently,

$$
\|f\|_{M_{p, \varphi}} \geq \sup _{0<\tau<t_{0}} \frac{1}{\varphi(t, \tau)} \frac{1}{(\nu \Gamma(t, \tau))^{\frac{1}{p}}}\|f\|_{L_{p}(\Gamma(t, \tau))} \geq 2^{-1} c_{2}^{\frac{1}{p}}|f(t)|_{0<\tau<t_{0}} \varphi(t, r)^{-1} .
$$

Hence $\|f\|_{M_{p, \varphi}}=\infty$, so $f \notin M_{p, \varphi}(\Gamma)$ and we have arrived at a contradiction.
Note that Case 2 implies that $\sup _{s<\tau<\tau} \varphi(t, \tau)^{-1}=\infty$, hence

$$
\begin{aligned}
\sup _{s<\tau<\infty} \frac{1}{\varphi(t, \tau)} \frac{1}{(\nu \Gamma(t, \tau))^{\frac{1}{p}}} & \geq \sup _{s<\tau<r} \frac{1}{\varphi(t, \tau)} \frac{1}{(\nu \Gamma(t, \tau))^{\frac{1}{p}}} \\
& \geq \frac{1}{(\nu \Gamma(t, r))^{\frac{1}{p}}} \sup _{s<\tau<r} \varphi(t, \tau)^{-1}=\infty
\end{aligned}
$$

which is the case in (i).
Q.E.D.

Remark 3.4. We denote by Ω_{p} the sets of all positive measurable functions φ on $\Gamma \times(0, \infty)$ such that for all $r>0$,

$$
\sup _{t \in \Gamma}\left\|\frac{1}{\varphi(t, \tau)} \frac{1}{(\nu \Gamma(t, \tau))^{\frac{1}{p}}}\right\|_{L_{\infty}(r, \infty)}<\infty, \quad \text { and } \quad \sup _{t \in \Gamma}\left\|\varphi(t, \tau)^{-1}\right\|_{L_{\infty}(0, r)}<\infty
$$

respectively. In what follows, keeping in mind Lemma 3.2, we always assume that $\varphi \in \Omega_{p}$.

A function $\varphi:(0, \infty) \rightarrow(0, \infty)$ is said to be almost increasing (resp. almost decreasing) if there exists a constant $C>0$ such that

$$
\varphi(r) \leq C \varphi(s) \quad(\text { resp. } \varphi(r) \geq C \varphi(s)) \quad \text { for } r \leq s
$$

Let $1 \leq p<\infty$. Denote by \mathcal{G}_{p} the the set of all almost decreasing functions $\varphi:(0, \infty) \rightarrow(0, \infty)$ such that $t \in(0, \infty) \mapsto t^{\frac{1}{p}} \varphi(t) \in(0, \infty)$ is almost increasing.

Seemingly the requirement $\varphi \in \mathcal{G}_{p}$ is superfluous but it turns out that this condition is natural. Indeed, Nakai established that there exists a function ρ such that ρ itself is decreasing, that $\rho(t) t^{n / p} \leq \rho(T) T^{n / p}$ for all $0<t \leq T<\infty$ and that $L M_{p, \varphi}^{\left\{t_{0}\right\}}(\Gamma)=L M_{p, \rho}^{\left\{t_{0}\right\}}(\Gamma), M_{p, \varphi}(\Gamma)=M_{p, \rho}(\Gamma)$.

By elementary calculations we have the following, which shows particularly that the spaces $L M_{p, \varphi}^{\left\{t_{0}\right\}}, W L M_{p, \varphi}^{\left\{t_{0}\right\}}, M_{p, \varphi}(\Gamma)$ and $W M_{p, \varphi}(\Gamma)$ are not trivial, see for example, [8, 9].

Lemma 3.3. Let $\varphi \in \mathcal{G}_{p}, 1 \leq p<\infty, \Gamma_{0}=\Gamma\left(t_{0}, r_{0}\right)$ and $\chi_{\Gamma_{0}}$ is the characteristic function of the ball Γ_{0}, then $\chi_{\Gamma_{0}} \in L M_{p, \varphi}^{\left\{t_{0}\right\}}(\Gamma) \cap M_{p, \varphi}(\Gamma)$. Moreover, there exists $C>0$ such that

$$
\frac{1}{\varphi\left(r_{0}\right)} \leq\left\|\chi_{\Gamma_{0}}\right\|_{W L M_{p, \varphi}^{\left\{t_{0}\right\}}} \leq\left\|\chi_{\Gamma_{0}}\right\|_{L M_{p, \varphi}^{\left\{t_{0}\right\}}} \leq \frac{C}{\varphi\left(r_{0}\right)}
$$

and

$$
\frac{1}{\varphi\left(r_{0}\right)} \leq\left\|\chi_{\Gamma_{0}}\right\|_{W M_{p, \varphi}} \leq\left\|\chi_{\Gamma_{0}}\right\|_{M_{p, \varphi}} \leq \frac{C}{\varphi\left(r_{0}\right)}
$$

Proof. Let $\varphi \in \mathcal{G}_{p}, 1 \leq p<\infty, \Gamma_{0}=\Gamma\left(t_{0}, r_{0}\right)$ denote an arbitrary ball in Γ. It is easy to see that

$$
\left\|\chi_{\Gamma_{0}}\right\|_{W L M_{p, \varphi}^{\left\{t_{0}\right\}}}=\sup _{r>0} \frac{1}{\varphi(r)}\left(\frac{\left|\Gamma\left(t_{0}, r\right) \cap \Gamma_{0}\right|}{\nu \Gamma\left(t_{0}, r\right)}\right)^{1 / p} \geq \frac{1}{\varphi\left(r_{0}\right)}\left(\frac{\left|\Gamma_{0} \cap \Gamma_{0}\right|}{\left|\Gamma_{0}\right|}\right)^{1 / p}=\frac{1}{\varphi\left(r_{0}\right)} .
$$

Now, if $r \leq r_{0}$, then $\varphi\left(r_{0}\right) \leq C \varphi(r)$ and

$$
\frac{1}{\varphi(r)}\left(\frac{\left|\Gamma\left(t_{0}, r\right) \cap \Gamma_{0}\right|}{\nu \Gamma\left(t_{0}, r\right)}\right)^{1 / p} \leq \frac{1}{\varphi(r)} \leq \frac{C}{\varphi\left(r_{0}\right)}
$$

for all $t \in \Gamma$.
On the other hand, if $r_{0} \leq r$, we have $\varphi\left(r_{0}\right) r_{0}^{1 / p} \leq C \varphi(r) r^{1 / p}$ for all $t \in \Gamma$ and

$$
\frac{1}{\varphi(r)}\left(\frac{\left|\Gamma\left(t_{0}, r\right) \cap \Gamma_{0}\right|}{\nu \Gamma\left(t_{0}, r\right)}\right)^{1 / p}=\frac{\left|\Gamma\left(t_{0}, r\right) \cap \Gamma_{0}\right|^{1 / p}}{c_{2}^{1 / p} \varphi(r) r^{1 / p}} \leq \frac{\left|\Gamma_{0}\right|^{1 / p}}{c_{2}^{1 / p} \varphi(r) r^{1 / p}}=\frac{r_{0}^{1 / p}}{\varphi(r) r^{1 / p}} \leq \frac{C}{\varphi\left(r_{0}\right)}
$$

for all $x \in \Gamma$. This completes the proof.
Q.E.D.

4 Fractional maximal operator in the spaces $L M_{p, \varphi}^{\left\{t_{\varphi}\right\}}(\Gamma)$ and $M_{p, \varphi}(\Gamma)$

In this section, we give a characterization for the Spanne-Guliyev type boundedness of the operator \mathcal{M}^{α} on the local generalized Morrey spaces $L M_{p, \varphi}^{\left\{t_{0}\right\}}(\Gamma)$ and the generalized Morrey spaces $M_{p, \varphi}(\Gamma)$, respectively, including weak versions. We give also a characterization for the AdamsGuliyev and Adams-Gunawan type boundedness of the operator \mathcal{M}^{α} on the generalized Morrey spaces $M_{p, \varphi}(\Gamma)$, including weak versions.

We denote by $L_{\infty, v}(0, \infty)$ the space of all functions $g(t), t>0$ with finite norm

$$
\|g\|_{L_{\infty, v}(0, \infty)}=\underset{t>0}{\operatorname{ess} \sup } v(t) g(t)
$$

and $L_{\infty}(0, \infty) \equiv L_{\infty, 1}(0, \infty)$. Let $\mathfrak{M}(0, \infty)$ be the set of all Lebesgue-measurable functions on $(0, \infty)$ and $\mathfrak{M}^{+}(0, \infty)$ its subset consisting of all nonnegative functions on $(0, \infty)$. We denote by $\mathfrak{M}^{+}(0, \infty ; \uparrow)$ the cone of all functions in $\mathfrak{M}^{+}(0, \infty)$ which are non-decreasing on $(0, \infty)$ and

$$
\mathbb{A}=\left\{\varphi \in \mathfrak{M}^{+}(0, \infty ; \uparrow): \lim _{t \rightarrow 0+} \varphi(t)=0\right\}
$$

Let u be a continuous and non-negative function on $(0, \infty)$. We define the supremal operator \bar{S}_{u} on $g \in \mathfrak{M}(0, \infty)$ by

$$
\left(\bar{S}_{u} g\right)(t):=\|u g\|_{L_{\infty}(t, \infty)}, \quad t \in(0, \infty)
$$

The following theorem was proved in [5].
Theorem 4.1. Let v_{1}, v_{2} be non-negative measurable functions satisfying $0<\left\|v_{1}\right\|_{L_{\infty}(t, \infty)}<\infty$ for any $t>0$ and let u be a continuous non-negative function on $(0, \infty)$.

Then the operator \bar{S}_{u} is bounded from $L_{\infty, v_{1}}(0, \infty)$ to $L_{\infty, v_{2}}(0, \infty)$ on the cone \mathbb{A} if and only if

$$
\begin{equation*}
\left\|v_{2} \bar{S}_{u}\left(\left\|v_{1}\right\|_{L_{\infty}(\cdot, \infty)}^{-1}\right)\right\|_{L_{\infty}(0, \infty)}<\infty \tag{4.1}
\end{equation*}
$$

4.1 Spanne-Guliyev type result

The following Guliyev local estimate for the fractional maximal operator \mathcal{M}^{α} is true, see for example, $[2,14]$.

Lemma 4.1. Let Γ be a Carleson curve, $1 \leq p<q<\infty, 0 \leq \alpha<1, \frac{1}{p}-\frac{1}{q}=\alpha$ and $t_{0} \in \Gamma$. Then for $p>1$ and any $r>0$ the inequality

$$
\begin{equation*}
\left\|\mathcal{M}^{\alpha} f\right\|_{L_{p}\left(\Gamma\left(t_{0}, r\right)\right)} \lesssim\|f\|_{L_{p}\left(\Gamma\left(t_{0}, 2 r\right)\right)}+r^{\frac{1}{p}} \sup _{\tau>2 r} \tau^{-1}\|f\|_{L_{1}\left(\Gamma\left(t_{0}, \tau\right)\right)} \tag{4.2}
\end{equation*}
$$

holds for all $f \in L_{p}^{\text {loc }}(\Gamma)$.
Moreover for $p=1$ the inequality

$$
\begin{equation*}
\left\|\mathcal{M}^{\alpha} f\right\|_{W L_{1}\left(\Gamma\left(t_{0}, r\right)\right)} \lesssim\|f\|_{L_{1}\left(\Gamma\left(t_{0}, 2 r\right)\right)}+r \sup _{\tau>2 r} \tau^{-1}\|f\|_{L_{1}\left(\Gamma\left(t_{0}, \tau\right)\right)} \tag{4.3}
\end{equation*}
$$

holds for all $f \in L_{1}^{\text {loc }}(\Gamma)$.

Proof. Let $1<p<q<\infty, 0<\alpha<1, \frac{1}{p}-\frac{1}{q}=\alpha$. For arbitrary ball $\Gamma\left(t_{0}, r\right)$ let $f=f_{1}+f_{2}$, where $f_{1}=f \chi_{\Gamma\left(t_{0}, 2 r\right)}$ and $f_{2}=f \chi^{\mathrm{c}_{\left(\Gamma\left(t_{0}, 2 r\right)\right)}}$.

$$
\left\|\mathcal{M}^{\alpha} f\right\|_{L_{p}\left(\Gamma\left(t_{0}, r\right)\right)} \leq\left\|\mathcal{M}^{\alpha} f_{1}\right\|_{L_{p}\left(\Gamma\left(t_{0}, r\right)\right)}+\left\|\mathcal{M}^{\alpha} f_{2}\right\|_{L_{p}\left(\Gamma\left(t_{0}, r\right)\right)} .
$$

By the continuity of the operator $\mathcal{M}^{\alpha}: L_{p}(\Gamma) \rightarrow L_{q}(\Gamma)$ from Theorem C we have

$$
\left\|\mathcal{M}^{\alpha} f_{1}\right\|_{L_{q}\left(\Gamma\left(t_{0}, r\right)\right)} \lesssim\|f\|_{L_{p}\left(\Gamma\left(t_{0}, 2 r\right)\right)}
$$

Let y be an arbitrary point from $\Gamma\left(t_{0}, \tau\right)$. If $\Gamma(y, \tau) \cap{ }^{\mathrm{c}}\left(\Gamma\left(t_{0}, 2 r\right)\right) \neq \varnothing$, then $\tau>r$. Indeed, if $z \in \Gamma(y, \tau) \cap{ }^{\circ}\left(\Gamma\left(t_{0}, 2 r\right)\right)$, then $\tau>|y-z| \geq|t-z|-|t-y|>2 r-r=r$.

On the other hand, $\Gamma(y, \tau) \cap^{\mathrm{c}}\left(\Gamma\left(t_{0}, 2 r\right)\right) \subset \Gamma\left(t_{0}, 2 \tau\right)$. Indeed, $z \in \Gamma(y, \tau) \cap^{\mathrm{c}}\left(\Gamma\left(t_{0}, 2 r\right)\right)$, then we get $|t-z| \leq|y-z|+|t-y|<\tau+r<2 \tau$.

Hence

$$
\begin{aligned}
\mathcal{M}^{\alpha} f_{2}(y) & =\sup _{\tau>0} \frac{1}{\left(\nu \Gamma\left(t_{0}, \tau\right)\right)^{1-\alpha}} \int_{\Gamma(y, \tau) \cap^{\mathrm{c}}\left(\Gamma\left(t_{0}, 2 r\right)\right)}|f(z)| d \nu(z) \\
& \leq 2 \sup _{\tau>r} \frac{1}{\left(\nu \Gamma\left(t_{0}, 2 \tau\right)\right)^{1-\alpha}} \int_{\Gamma\left(t_{0}, 2 \tau\right)}|f(z)| d \nu(z) \\
& =2 \sup _{\tau>2 r} \frac{1}{\left(\nu \Gamma\left(t_{0}, \tau\right)\right)^{1-\alpha}} \int_{\Gamma\left(t_{0}, \tau\right)}|f(z)| d \nu(z) \leq 2 \sup _{\tau>2 r} \tau^{-1+\alpha} \int_{\Gamma\left(t_{0}, \tau\right)}|f(z)| d \nu(z) .
\end{aligned}
$$

Therefore, for all $y \in \Gamma\left(t_{0}, \tau\right)$ we have

$$
\begin{equation*}
\mathcal{M}^{\alpha} f_{2}(y) \leq 2 \sup _{\tau>2 r} \tau^{-1+\alpha} \int_{\Gamma\left(t_{0}, \tau\right)}|f(z)| d \nu(z) . \tag{4.4}
\end{equation*}
$$

Thus

$$
\left\|\mathcal{M}^{\alpha} f\right\|_{L_{p}\left(\Gamma\left(t_{0}, r\right)\right)} \lesssim\|f\|_{L_{p}\left(\Gamma\left(t_{0}, 2 r\right)\right)}+r^{\frac{1}{p}}\left(\sup _{\tau>2 r} \tau^{-1+\alpha} \int_{\Gamma\left(t_{0}, \tau\right)}|f(z)| d \nu(z)\right)
$$

Let $p=1$. It is obvious that for any ball $\Gamma\left(t_{0}, r\right)$

$$
\left\|\mathcal{M}^{\alpha} f\right\|_{W L_{1}\left(\Gamma\left(t_{0}, r\right)\right)} \leq\left\|\mathcal{M}^{\alpha} f_{1}\right\|_{W L_{1}\left(\Gamma\left(t_{0}, r\right)\right)}+\left\|\mathcal{M}^{\alpha} f_{2}\right\|_{W L_{1}\left(\Gamma\left(t_{0}, r\right)\right)}
$$

By the continuity of the operator $\mathcal{M}^{\alpha}: L_{1}(\Gamma) \rightarrow W L_{q}(\Gamma)$ from Theorem C we have

$$
\left\|\mathcal{M}^{\alpha} f_{1}\right\|_{W L_{1}(\Gamma)} \lesssim\|f\|_{L_{1}\left(\Gamma\left(t_{0}, 2 r\right)\right)}
$$

Then by (4.4) we get the inequality (4.3).

> Q.E.D.

Lemma 4.2. Let Γ be a Carleson curve, $1 \leq p<q<\infty, 0 \leq \alpha<1, \frac{1}{p}-\frac{1}{q}=\alpha$ and $t_{0} \in \Gamma$. Then for $p>1$ and any $r>0$ in Γ, the inequality

$$
\begin{equation*}
\left\|\mathcal{M}^{\alpha} f\right\|_{L_{q}\left(\Gamma\left(t_{0}, r\right)\right)} \lesssim r^{\frac{1}{q}} \sup _{\tau>2 r} \tau^{-\frac{1}{q}}\|f\|_{L_{p}\left(\Gamma\left(t_{0}, \tau\right)\right)} \tag{4.5}
\end{equation*}
$$

holds for all $f \in L_{p}^{\text {loc }}(\Gamma)$.
Moreover for $p=1$ the inequality

$$
\begin{equation*}
\left\|\mathcal{M}^{\alpha} f\right\|_{W L_{1}\left(\Gamma\left(t_{0}, r\right)\right)} \lesssim r^{\frac{1}{q}} \sup _{\tau>2 r} \tau^{-\frac{1}{q}}\|f\|_{L_{1}\left(\Gamma\left(t_{0}, \tau\right)\right)} \tag{4.6}
\end{equation*}
$$

holds for all $f \in L_{1}^{\text {loc }}(\Gamma)$.
Proof. Let $1<p<q<\infty, 0 \leq \alpha<1, \frac{1}{p}-\frac{1}{q}=\alpha$. Denote

$$
\begin{aligned}
& \mathcal{M}_{1}:=r^{\frac{1}{q}} \sup _{\tau>2 r} \tau^{-1+\alpha} \int_{\Gamma\left(t_{0}, r\right)}|f(z)| d \nu(z), \\
& \mathcal{M}_{2}:=\|f\|_{L_{p}\left(\Gamma\left(t_{0}, 2 r\right)\right)} .
\end{aligned}
$$

Applying Hölder's inequality, we get

$$
\mathcal{M}_{1} \lesssim r^{\frac{1}{q}} \sup _{\tau>2 r} \tau^{-\frac{1}{q}}\left(\int_{\Gamma\left(t_{0}, \tau\right)}|f(z)|^{p} d \nu(z)\right)^{\frac{1}{p}}
$$

On the other hand,

$$
\begin{aligned}
& r^{\frac{1}{q}} \sup _{\tau>2 r} \tau^{-\frac{1}{q}}\left(\int_{\Gamma\left(t_{0}, \tau\right)}|f(z)|^{p} d \nu(z)\right)^{\frac{1}{p}} \\
& \gtrsim r^{\frac{1}{q}}\left(\sup _{\tau>2 r} \tau^{-\frac{1}{q}}\right)\|f\|_{L_{p}\left(\Gamma\left(t_{0}, 2 r\right)\right)} \approx \mathcal{M}_{2}
\end{aligned}
$$

Since by Lemma 4.1

$$
\left\|\mathcal{M}^{\alpha} f\right\|_{L_{p}\left(\Gamma\left(t_{0}, r\right)\right)} \leq \mathcal{M}_{1}+\mathcal{M}_{2}
$$

we arrive at (4.5).
Let $p=1$. The inequality (4.6) directly follows from (4.3).
Q.E.D.

For the operator \mathcal{M}^{α} the following Spanne-Guliyev type result on the space $L M_{p, \varphi}^{\left\{t_{0}\right\}}(\Gamma)$ is valid (see [16]).
Theorem 4.2. Let Γ be a Carleson curve, $1 \leq p<q<\infty, 0 \leq \alpha<1, \frac{1}{p}-\frac{1}{q}=\alpha, t_{0} \in \Gamma$, $\varphi_{1} \in \Omega_{p, l o c}, \varphi_{2} \in \Omega_{q, l o c}$ and $\left(\varphi_{1}, \varphi_{2}\right)$ satisfies the condition

$$
\begin{equation*}
\sup _{r<\tau<\infty} \tau^{\alpha-\frac{1}{p}} \underset{\tau<s<\infty}{\operatorname{ess} \inf _{1}} \varphi_{1}\left(t_{0}, s\right) s^{\frac{1}{p}} \leq C \varphi_{2}\left(t_{0}, r\right) \tag{4.7}
\end{equation*}
$$

where C does not depend on r. Then for $p>1$, the operator \mathcal{M}^{α} is bounded from $L M_{p, \varphi_{1}}^{\left\{t_{0}\right\}}(\Gamma)$ to $L M_{q, \varphi_{2}}^{\left\{t_{0}\right\}_{2}}(\Gamma)$ and for $p=1$, the operator \mathcal{M}^{α} is bounded from $L M_{1, \varphi_{1}}^{\left\{t_{0}\right\}}(\Gamma)$ to $W L M_{q, \varphi_{2}}^{\left\{t_{0}\right\}}(\Gamma)$.

Proof. By Theorem 4.1 and Lemma 4.2 we get

$$
\begin{aligned}
\left\|\mathcal{M}^{\alpha} f\right\|_{L M_{p, \varphi_{2}}^{\left\{t_{0}\right\}}(\Gamma)} & \lesssim \sup _{r>0} \varphi_{2}\left(t_{0}, r\right)^{-1} \sup _{\tau>r} \tau^{-\frac{1}{p}}\|f\|_{L_{p}\left(\Gamma\left(t_{0}, \tau\right)\right)} \\
& \lesssim \sup _{r>0} \varphi_{1}(t, r)^{-1} r^{-\frac{1}{p}}\|f\|_{L_{p}\left(\Gamma\left(t_{0}, r\right)\right)}=\|f\|_{L M_{p, \varphi_{1}}^{\left\{t_{0}\right\}}(\Gamma)},
\end{aligned}
$$

if $p \in(1, \infty)$ and

$$
\begin{aligned}
\left\|\mathcal{M}^{\alpha} f\right\|_{W L M_{p, \varphi_{2}}^{\left\{t_{0}\right\}}(\Gamma)} & \lesssim \sup _{r>0} \varphi_{2}\left(t_{0}, r\right)^{-1} \sup _{\tau>r} \tau^{-1}\|f\|_{L_{1}\left(\Gamma\left(t_{0}, r\right)\right)} \\
& \lesssim \sup _{r>0} \varphi_{1}(t, r)^{-1} r^{-1}\|f\|_{L_{1}\left(\Gamma\left(t_{0}, r\right)\right)}=\|f\|_{L M_{1, \varphi_{1}}^{\left\{t_{0}\right\}}(\Gamma)},
\end{aligned}
$$

if $p=1$.
Q.E.D.

From Theorem 4.2 we get (see [14]) the following
Corollary 4.1. Let Γ be a Carleson curve, $1 \leq p<q<\infty, 0 \leq \alpha<1, \frac{1}{p}-\frac{1}{q}=\alpha$ and $\varphi_{1} \in \Omega_{p}$, $\varphi_{2} \in \Omega_{q}$ satisfies the condition

$$
\begin{equation*}
\sup _{r<\tau<\infty} \tau^{-\frac{1}{q}} \underset{\tau<s<\infty}{\operatorname{ess}} \inf \varphi_{1}(t, s) s^{\frac{1}{p}} \leq C \varphi_{2}(t, r), \tag{4.8}
\end{equation*}
$$

where C does not depend on t and r. Then for $p>1$, the operator \mathcal{M}^{α} is bounded from $M_{p, \varphi_{1}}(\Gamma)$ to $M_{q, \varphi_{2}}(\Gamma)$ and for $p=1$, the operator \mathcal{M}^{α} is bounded from $M_{1, \varphi_{1}}(\Gamma)$ to $W M_{q, \varphi_{2}}(\Gamma)$.

For proving our main results, we need the following estimate.
Lemma 4.3. Let Γ be a Carleson curve and $\Gamma_{0}:=\Gamma\left(t_{0}, r_{0}\right)$, then $r_{0}^{\alpha} \leq C \mathcal{M}^{\alpha} \chi_{\Gamma_{0}}(t)$ for every $t \in \Gamma_{0}$.

Proof. It is well-known that

$$
\begin{equation*}
\mathrm{M}^{\alpha} f(t) \leq 2^{1-\alpha} \mathcal{M}^{\alpha} f(t) \tag{4.9}
\end{equation*}
$$

where $\mathrm{M}^{\alpha}(f)(t)=\sup _{B \ni t}|B|^{-1+\alpha} \int_{B}|f(\tau)| d \nu(\tau)$.
Now let $t \in \Gamma_{0}$. By using (4.9), we get

$$
\begin{aligned}
M_{\alpha} \chi_{\Gamma_{0}}(t) & \geq C \mathrm{M}_{\alpha} \chi_{\Gamma_{0}}(t) \geq C \sup _{B \ni t}|B|^{-1+\alpha}\left|B \cap \Gamma_{0}\right| \\
& \geq C\left|\Gamma_{0}\right|^{-1+\alpha}\left|\Gamma_{0} \cap \Gamma_{0}\right|=C r_{0}^{\alpha} .
\end{aligned}
$$

Q.E.D.

The following theorem is one of our main results.
Theorem 4.3. Let Γ be a Carleson curve, $0<\alpha<1, t_{0} \in \Gamma$ and $p, q \in[1, \infty)$.

1. If $1 \leq p<\frac{1}{\alpha}$ and $\frac{1}{q}=\frac{1}{p}-\alpha$, then the condition (4.7) is sufficient for the boundedness of the operator \mathcal{M}^{α} from $L M_{p, \varphi_{1}}^{\left\{t_{0}\right\}}(\Gamma)$ to $W L M_{q, \varphi_{2}}^{\left\{t_{0}\right\}}(\Gamma)$. Moreover, if $1<p<\frac{1}{\alpha}$, the condition (4.7) is sufficient for the boundedness of the operator \mathcal{M}^{α} from $L M_{p, \varphi_{1}}^{\left\{t_{0}\right\}}(\Gamma)$ to $L M_{q, \varphi_{2}}^{\left\{t_{0}\right\}}(\Gamma)$.
2. If the function $\varphi_{1} \in \mathcal{G}_{p}$, then the condition

$$
\begin{equation*}
r^{\alpha} \varphi_{1}(r) \leq C \varphi_{2}(r) \tag{4.10}
\end{equation*}
$$

for all $r>0$, where $C>0$ does not depend r, is necessary for the boundedness of the operator \mathcal{M}^{α} from $L M_{p, \varphi_{1}}^{\left\{t_{0}\right\}}(\Gamma)$ to $W L M_{q, \varphi_{2}^{1}}^{\left\{t_{0}\right\}}(\Gamma)$ and $L M_{p, \varphi_{1}}^{\left\{t_{0}\right\}}(\Gamma)$ to $L M_{q, \varphi_{2}}^{\left\{t_{0}\right\}}(\Gamma)$.
3. Let $1 \leq p<\frac{1}{\alpha}$ and $\frac{1}{q}=\frac{1}{p}-\alpha$. If $\varphi_{1} \in \mathcal{G}_{p}$, then the condition (4.10) is necessary and sufficient for the boundedness of the operator \mathcal{M}^{α} from $L M_{p, \varphi_{1}}^{\left\{t_{0}\right\}}(\Gamma)$ to $W L M_{q, \varphi_{2}}^{\left\{t_{0}\right\}}(\Gamma)$. Moreover, if $1<p<\frac{Q}{\alpha}$, then the condition (4.10) is necessary and sufficient for the boundedness of the operator \mathcal{M}^{α} from $L M_{p, \varphi_{1}}^{\left\{t_{0}\right\}}(\Gamma)$ to $L M_{q, \varphi_{2}}^{\left\{t_{0}\right\}}(\Gamma)$.
Proof. The first part of the theorem proved in Theorem 4.2.
We shall now prove the second part. Let $\Gamma_{0}=\Gamma\left(t_{0}, r_{0}\right)$ and $t \in \Gamma_{0}$. By Lemma 4.3 we have $r_{0}^{\alpha} \leq C \mathcal{M}^{\alpha} \chi_{\Gamma_{0}}(r)$. Therefore, by Lemma 3.3 and Lemma 4.3

$$
r_{0}^{\alpha} \lesssim\left(\nu\left(\Gamma_{0}\right)\right)^{-\frac{1}{p}}\left\|\mathcal{M}^{\alpha} \chi_{\Gamma_{0}}\right\|_{L_{q}\left(\Gamma_{0}\right)} \lesssim \varphi_{2}\left(r_{0}\right)\left\|\mathcal{M}^{\alpha} \chi_{\Gamma_{0}}\right\|_{M_{q, \varphi_{2}}} \lesssim \varphi_{2}\left(r_{0}\right)\left\|\chi_{\Gamma_{0}}\right\|_{M_{p, \varphi_{1}}} \lesssim \frac{\varphi_{2}\left(r_{0}\right)}{\varphi_{1}\left(r_{0}\right)}
$$

or

$$
r_{0}^{\alpha} \lesssim \frac{\varphi_{2}\left(r_{0}\right)}{\varphi_{1}\left(r_{0}\right)} \text { for all } r_{0}>0 \Longleftrightarrow r_{0}^{\alpha} \varphi_{1}\left(r_{0}\right) \lesssim \varphi_{2}\left(r_{0}\right) \text { for all } r_{0}>0
$$

Since this is true for every $r_{0}>0$, we are done.
The third statement of the theorem follows from first and second parts of the theorem. Q.E.D.
Remark 4.4. If we take $\varphi_{1}(r)=r^{\frac{\lambda-1}{p}}$ and $\varphi_{2}(r)=r^{\frac{\mu-1}{q}}$ at Theorem 4.3, then condition(4.10) is equivalent to $0<\lambda<1-\alpha p$ and $\frac{\lambda}{p}=\frac{\mu}{q}$, respectively. Therefore, we get Theorem B from Theorem 4.3.

4.2 Adams-Guliyev type result

The following Guliyev pointwise estimate plays a key role where we prove our main results.
Theorem 4.5. Let Γ be a Carleson curve, $1 \leq p<\infty, 0<\alpha<1$ and $f \in L_{p}^{l o c}(\Gamma)$. Then

$$
\begin{equation*}
\mathcal{M}^{\alpha} f(t) \leq C r^{\alpha} \mathcal{M} f(t)+C \sup _{r<s<\infty} s^{\alpha-\frac{1}{p}}\|f\|_{L_{p}(\Gamma(t, s))} d s \tag{4.11}
\end{equation*}
$$

where C does not depend on $f, t \in \Gamma$ and $r>0$.
Proof. Write $f=f_{1}+f_{2}$, where $f_{1}=f \chi_{\Gamma(t, 2 r)}, f_{2}=f \chi_{\mathbf{0}_{(\Gamma(t, 2 r))}}$. Then for all $z \in \Gamma$

$$
\mathcal{M}^{\alpha} f(z) \leq \mathcal{M}^{\alpha} f_{1}(z)+\mathcal{M}^{\alpha} f_{2}(z)
$$

For $\mathcal{M}^{\alpha} f_{1}(t)$, following Hedberg's trick (see for instance [27], p. 354), for all $z \in \Gamma$ we obtain $\left|\mathcal{M}^{\alpha} f_{1}(z)\right| \leq C_{1} r^{\alpha} \mathcal{M} f(z)$. For $\mathcal{M}^{\alpha} f_{2}(z)$ with $z \in \Gamma(t, r)$ from (4.4) we have

$$
\begin{equation*}
\mathcal{M}^{\alpha} f_{2}(z) \leq 2 \sup _{s>r} \tau^{-1+\alpha} \int_{\Gamma(t, s)}|f(z)| d \nu(z) \leq C \sup _{r<s<\infty} s^{\alpha-\frac{1}{p}}\|f\|_{L_{p}(\Gamma(t, s))} \tag{4.12}
\end{equation*}
$$

which proves (4.11).
Q.E.D.

The following is a result of Adams-Guliyev type for the fractional integral on Carleson curves (see, [14]).
Theorem 4.6. (Adams-Guliyev type result) Let Γ be a Carleson curve, $1 \leq p<q<\infty, 0<\alpha<\frac{1}{p}$ and let $\varphi \in \Omega_{p}$ satisfy condition

$$
\begin{equation*}
\sup _{r<\tau<\infty} \tau^{-1} \underset{\tau<s<\infty}{\operatorname{ess} \inf } \varphi(t, s) s \leq C \varphi(t, r) \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{r<\tau<\infty} \tau^{\alpha} \varphi(t, \tau)^{\frac{1}{p}} \leq C r^{-\frac{\alpha p}{q-p}} \tag{4.14}
\end{equation*}
$$

where C does not depend on $t \in \Gamma$ and $r>0$. Then for $p>1$, the operator \mathcal{M}^{α} is bounded from $M_{p, \varphi^{\frac{1}{p}}}(\Gamma)$ to $M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$ and for $p=1$, the operator \mathcal{I}^{α} is bounded from $M_{1, \varphi}(\Gamma)$ to $W M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$.
Proof. Let $1 \leq p<\infty$ and $f \in M_{p, \varphi}(\Gamma)$. By Theorem 4.5 the inequality (4.11) is valid. Then from condition (4.14) and inequality (4.11) we get

$$
\begin{align*}
\mathcal{M}^{\alpha} f(t) & \lesssim r^{\alpha} \mathcal{M} f(t)+\sup _{s>r} s^{\alpha-\frac{1}{p}}\|f\|_{L_{p}(\Gamma(t, s))} \\
& \leq r^{\alpha} \mathcal{M} f(t)+\|f\|_{M}{ }_{p, \varphi^{\frac{1}{p}}(\Gamma)} \sup _{s>r} s^{\alpha} \varphi(t, s)^{\frac{1}{p}} \\
& \leq r^{\alpha} \mathcal{M} f(t)+r^{-\frac{\alpha p}{q-p}}\|f\|_{M_{p, \varphi^{\frac{1}{p}}}(\Gamma)} . \tag{4.15}
\end{align*}
$$

Hence choosing $r=\left(\frac{M_{p, \varphi}^{\frac{1}{p}}(\Gamma)}{\mathcal{M} f(t)}\right)$ for every $t \in \Gamma$, we have

$$
\mathcal{M}^{\alpha} f(t) \lesssim(\mathcal{M} f(t))^{\frac{p}{q}}\|f\|_{M_{p, \varphi^{\frac{1}{p}}}^{1-\frac{p}{q}}(\Gamma)}
$$

Hence the statement of the theorem follows in view of the boundedness of the maximal operator \mathcal{M} in $M_{p, \varphi}(\Gamma)$ provided by Theorem 4.2, in virtue of condition (4.13).

$$
\begin{aligned}
\left\|\mathcal{M}^{\alpha} f\right\|_{M_{q, \varphi} \varphi^{\frac{1}{q}}(\Gamma)} & \lesssim\|f\|_{M_{p, \varphi^{\frac{1}{p}}}^{1-\frac{p}{q}}(\Gamma)}^{\sup _{t \in \Gamma, r>0} \varphi(t, r)^{-\frac{p}{q}} r^{-\frac{1}{q}}\|\mathcal{M} f\|_{L_{p}(\Gamma(t, r))}^{\frac{p}{q}}} \\
& \lesssim\|f\|_{M_{p, \varphi^{\frac{1}{p}}}^{1-\frac{p}{q}}(\Gamma)}\|\mathcal{M} f\|_{M_{p, \varphi^{\frac{1}{p}}}^{\frac{1}{q}}(\Gamma)} \lesssim\|f\|_{M_{p, \varphi^{\frac{1}{p}}}(\Gamma)},
\end{aligned}
$$

if $1<p<q<\infty$ and

$$
\begin{aligned}
\left\|\mathcal{M}^{\alpha} f\right\|_{W M}^{q, \varphi}{ }_{q, ~}^{\frac{1}{q}}(\Gamma) & \lesssim\|f\|_{M_{1, \varphi}(\Gamma)}^{1-\frac{1}{q}} \sup _{t \in \Gamma, r>0} \varphi(t, r)^{-\frac{1}{q}} r^{-\frac{1}{q}}\|\mathcal{M} f\|_{W L_{1}(\Gamma(t, r))}^{\frac{1}{q}} \\
& \lesssim\|f\|_{M_{1, \varphi}(\Gamma)}^{1-\frac{1}{q}}\|\mathcal{M} f\|_{M_{1, \varphi}(\Gamma)}^{\frac{1}{q}} \lesssim\|f\|_{M_{1, \varphi}(\Gamma)},
\end{aligned}
$$

if $p=1<q<\infty$.
Q.E.D.

The following theorem is one of our main results.

Theorem 4.7. Let Γ be a Carleson curve, $0<\alpha<1,1 \leq p<q<\infty$ and $\varphi \in \Omega_{p}$.

1. If $\varphi(t, r)$ satisfy condition (4.13), then the condition (4.14) is sufficient for the boundedness of the operator \mathcal{M}^{α} from $M_{p, \varphi^{\frac{1}{p}}}(\Gamma)$ to $W M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$. Moreover, if $1<p<q<\infty$, then the condition (4.14) is sufficient for the boundedness of the operator \mathcal{M}^{α} from $M_{p, \varphi^{\frac{1}{p}}}(\Gamma)$ to $M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$.
2. If $\varphi \in \mathcal{G}_{p}$, then the condition

$$
\begin{equation*}
r^{\alpha} \varphi(r)^{\frac{1}{p}} \leq C r^{-\frac{\alpha p}{q-p}} \tag{4.16}
\end{equation*}
$$

for all $r>0$, where $C>0$ does not depend r, is necessary for the boundedness of the operator \mathcal{M}^{α} from $M_{p, \varphi^{\frac{1}{p}}}(\Gamma)$ to $W M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$ and from $M_{p, \varphi^{\frac{1}{p}}}(\Gamma)$ to $M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$.
3. If $\varphi \in \mathcal{G}_{p}$, then the condition (4.16) is necessary and sufficient for the boundedness of the operator \mathcal{M}^{α} from $M_{p, \varphi^{\frac{1}{p}}}(\Gamma)$ to $W M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$. Moreover, if $1<p<q<\infty$, then the condition (4.16) is necessary and sufficient for the boundedness of the operator \mathcal{M}^{α} from $M_{p, \varphi^{\frac{1}{p}}}(\Gamma)$ to $M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$.
Proof. The first part of the theorem is a corollary of Theorem 4.6.
We shall now prove the second part. Let $\Gamma_{0}=\Gamma\left(t_{0}, r_{0}\right)$ and $t \in \Gamma_{0}$. By Lemma 4.3 we have $r_{0}^{\alpha} \lesssim \mathcal{M}^{\alpha} \chi_{\Gamma_{0}}(t)$. Therefore, by Lemma 3.3 and Lemma 4.3 we have

$$
\begin{aligned}
r_{0}^{\alpha} & \lesssim\left(\nu\left(\Gamma_{0}\right)\right)^{-\frac{1}{q}}\left\|\mathcal{M}^{\alpha} \chi_{\Gamma_{0}}\right\|_{L_{q}\left(\Gamma_{0}\right)} \lesssim \varphi\left(r_{0}\right)^{\frac{1}{q}}\left\|\mathcal{M}^{\alpha} \chi_{\Gamma_{0}}\right\|_{M_{q, \varphi}{ }^{\frac{1}{q}}}(\Gamma) \\
& \lesssim \varphi\left(r_{0}\right)^{\frac{1}{q}}\left\|\chi_{\Gamma_{0}}\right\|_{M_{p, \varphi}}(\Gamma) \\
\frac{1}{p}(\Gamma) & \lesssim\left(r_{0}\right)^{\frac{1}{q}-\frac{1}{p}}
\end{aligned}
$$

or

$$
r_{0}^{\alpha} \varphi\left(r_{0}\right)^{\frac{1}{p}-\frac{1}{q}} \lesssim 1 \text { for all } r_{0}>0 \Longleftrightarrow r_{0}^{\alpha} \varphi\left(r_{0}\right)^{\frac{1}{p}} \lesssim r_{0}^{-\frac{\alpha p}{q-p}} .
$$

Since this is true for every $t \in \Gamma$ and $r_{0}>0$, we are done.
The third statement of the theorem follows from first and second parts of the theorem. Q.E.D.

4.3 Adams-Gunawan type result

The following is a result of Adams-Gunawan type for the fractional integral on Carleson curves (see, $[17,18]$).
Theorem 4.8. (Adams-Gunawan type result). Let Γ be a Carleson curve, $0<\alpha<1,1 \leq p<q<$ ∞ and $\varphi \in \Omega_{p}$ satisfy condition (4.13) and

$$
\begin{equation*}
r^{\alpha} \varphi(t, r)+\int_{r}^{\infty} s^{\alpha-1} \varphi(t, s) d s \leq C \varphi(t, r)^{\frac{p}{q}} \tag{4.17}
\end{equation*}
$$

where C does not depend on $t \in \Gamma$ and $r>0$. Then for $p>1$, the operator \mathcal{M}^{α} is bounded from $M_{p, \varphi^{\frac{1}{p}}}(\Gamma)$ to $M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$ and for $p=1$, the operator \mathcal{M}^{α} is bounded from $M_{1, \varphi}(\Gamma)$ to $W M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$. Proof. Let $1 \leq p<\infty$ and $f \in M_{p, \varphi}(\Gamma)$. By Theorem 4.5 the inequality (4.11) is valid. Then from condition (4.14) and inequality (4.11) we get

$$
\begin{align*}
\mathcal{M}^{\alpha} f(t) & \lesssim r^{\alpha} \mathcal{M} f(t)+\sup _{s>r} s^{\alpha-\frac{1}{p}}\|f\|_{L_{p}(\Gamma(t, s))} \\
& \leq r^{\alpha} \mathcal{M} f(t)+\|f\|_{M_{p, \varphi}(\Gamma)} \sup _{s>r} s^{\alpha} \varphi(t, s) . \tag{4.18}
\end{align*}
$$

Thus, by (4.17) and (4.18) we obtain

$$
\begin{align*}
& \mathcal{M}^{\alpha} f(t) \lesssim \min \left\{\varphi(t, r)^{\frac{p}{q}-1} \mathcal{M} f(t), \varphi(t, r)^{\frac{p}{q}}\|f\|_{M_{p, \varphi}(\Gamma)}\right\} \\
& \lesssim \sup _{r>0} \min \left\{r^{\frac{p}{q}-1} \mathcal{M} f(t), r^{\frac{p}{q}}\|f\|_{M_{p, \varphi}(\Gamma)}\right\}=(\mathcal{M} f(t))^{\frac{p}{q}}\|f\|_{M_{p, \varphi}(\Gamma)}^{1-\frac{p}{q}} \tag{4.19}
\end{align*}
$$

where we have used that the supremum is achieved when the minimum parts are balanced. From Theorem 4.2 and (4.19), we get

$$
\left\|\mathcal{M}^{\alpha} f\right\|_{M_{q, \varphi}^{\frac{1}{q}}(\Gamma)} \lesssim\|f\|_{M_{p, \varphi}^{1-\frac{p}{q}}(\Gamma)}\|\mathcal{M} f\|_{M_{p, \varphi^{\frac{1}{p}}(\Gamma)}^{\frac{p}{q}}} \lesssim\|f\|_{M_{p, \varphi^{\frac{1}{p}}}(\Gamma)},
$$

if $1<p<q<\infty$ and

$$
\left\|\mathcal{M}^{\alpha} f\right\|_{W M}^{q, \varphi}{ }_{\frac{1}{q}}(\Gamma) \lesssim\|f\|_{M_{1, \varphi}(\Gamma)}^{1-\frac{1}{q}}\|\mathcal{M} f\|_{M_{1, \varphi}(\Gamma)}^{\frac{1}{q}} \lesssim\|f\|_{M_{1, \varphi}(\Gamma)}
$$

if $p=1<q<\infty$.
Q.E.D.

The following theorem is one of our main results.
Theorem 4.9. Let Γ be a Carleson curve, $0<\alpha<1,1 \leq p<q<\infty$ and $\varphi \in \Omega_{p}$.

1. If $\varphi(t, r)$ satisfy condition (4.13), then the condition (4.17) is sufficient for the boundedness of the operator \mathcal{M}^{α} from $M_{p, \varphi^{\frac{1}{p}}}(\Gamma)$ to $M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$. Moreover, if $1<p<q<\infty$, then the condition (4.17) is sufficient for the boundedness of the operator \mathcal{M}^{α} from $M_{p, \varphi^{\frac{1}{p}}}(\Gamma)$ to $M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$.
2. If $\varphi \in \mathcal{G}_{p}$, then the condition

$$
\begin{equation*}
r^{\alpha} \varphi(r)^{\frac{1}{p}} \leq C \varphi(r)^{\frac{1}{q}} \tag{4.20}
\end{equation*}
$$

for all $r>0$, where $C>0$ does not depend r, is necessary for the boundedness of the operator \mathcal{M}^{α} from $M_{p, \varphi^{\frac{1}{p}}}(\Gamma)$ to $W M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$ and from $M_{p, \varphi^{\frac{1}{p}}}(\Gamma)$ to $M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$.
3. If $\varphi \in \mathcal{G}_{p}$, then the condition (4.20) is necessary and sufficient for the boundedness of the operator \mathcal{M}^{α} from $M_{p, \varphi^{\frac{1}{p}}}(\Gamma)$ to $W M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$. Moreover, if $1<p<q<\infty$, then the condition (4.20) is necessary and sufficient for the boundedness of the operator \mathcal{M}^{α} from $M_{p, \varphi^{\frac{1}{p}}}(\Gamma)$ to $M_{q, \varphi^{\frac{1}{q}}}(\Gamma)$.
Proof. The first part of the theorem is a corollary of Theorem 4.8.
We shall now prove the second part. Let $\Gamma_{0}=\Gamma\left(t_{0}, r_{0}\right)$ and $t \in \Gamma_{0}$. By Lemma 4.3 we have $r_{0}^{\alpha} \leq C \mathcal{M}^{\alpha} \chi_{\Gamma_{0}}(t)$. Therefore, by Lemma 3.3 and Lemma 4.3 we have

$$
\begin{aligned}
r_{0}^{\alpha} & \lesssim\left(\nu\left(\Gamma_{0}\right)\right)^{-\frac{1}{q}}\left\|\mathcal{M}^{\alpha} \chi_{\Gamma_{0}}\right\|_{L_{q}\left(\Gamma_{0}\right)} \lesssim \varphi\left(r_{0}\right)^{\frac{1}{q}}\left\|\mathcal{M}^{\alpha} \chi_{\Gamma_{0}}\right\|_{M_{q, \varphi}}(\Gamma) \\
& \lesssim \varphi\left(r_{0}\right)^{\frac{1}{q}}\left\|\chi_{\Gamma_{0}}\right\|_{M_{p, \varphi}}{ }^{\frac{1}{p}}(\Gamma) \\
& \varphi\left(r_{0}\right)^{\frac{1}{q}-\frac{1}{p}}
\end{aligned}
$$

or

$$
r_{0}^{\alpha} \varphi\left(r_{0}\right)^{\frac{1}{p}-\frac{1}{q}} \lesssim 1 \text { for all } r_{0}>0 \Longleftrightarrow r_{0}^{\alpha} \varphi\left(r_{0}\right)^{\frac{1}{p}} \lesssim \varphi\left(r_{0}\right)^{\frac{1}{q}}
$$

Since this is true for every $t \in \Gamma$ and $r_{0}>0$, we are done.
The third statement of the theorem follows from first and second parts of the theorem. Q.E.D.

Remark 4.10. If we take $\varphi(r)=r^{\lambda-1}$ at Theorem 4.7, then the condition (4.16) is equivalent to $\frac{1}{p}-\frac{1}{q}=\frac{\alpha}{1-\lambda}$. Therefore, from Theorem 4.7 we get Theorem C.

Remark 4.11. If we take $\varphi(r)=[r]_{1}^{\lambda-1}$ at Theorem 4.7, then the condition (4.16) is equivalent to $\alpha \leq \frac{1}{p}-\frac{1}{q} \leq \frac{\alpha}{1-\lambda}$. Therefore, from Theorem 4.7 we get Theorem D.

Acknowledgements.

The authors thank the referees for careful reading the paper and useful comments.

References

[1] D.R. Adams, A note on Riesz potentials, Duke Math. 42 (1975), 765-778.
[2] A. Akbulut, V.S. Guliyev and R. Mustafayev, On the boundedness of the maximal operator and singular integral operators in generalized Morrey spaces, Math. Bohem., 137 (1) (2012), 27-43.
[3] A. Böttcher and Yu.I. Karlovich, Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators, Basel, Boston, Berlin: Birkhäuser Verlag, 1997, 397 pages.
[4] A. Böttcher and Yu.I. Karlovich, Toeplitz operators with PC symbols on general Carleson Jordan Curves with arbitrary Muckenhoupt Weights, Trans. Amer. Math. Soc. 351 (1999), 3143-3196.
[5] V. Burenkov, A. Gogatishvili, V.S. Guliyev, R. Mustafayev, Boundedness of the fractional maximal operator in local Morrey-type spaces, Complex Var. Elliptic Equ. 55 (8-10) (2010), 739-758.
[6] F. Deringoz, V.S. Guliyev, S.G. Samko, Boundedness of maximal and singular operators on generalized Orlicz-Morrey spaces, in Operator Theory, Operator Algebras and Applications, vol. 242 of Operator Theory: Advances and Applications, (2014), 1-24.
[7] Eridani, V. Kokilashvili, and A. Meskhi, Morrey spaces and fractional integral operators, Expo. Math. 27 (3) (2009), 227-239.
[8] Eridani, M. I. Utoyo, H. Gunawan, A characterization for fractional integrals on generalized Morrey spaces, Anal. Theory Appl. 28 (3) (2012), 263-268.
[9] A. Eroglu, V.S. Guliyev, C.V. Azizov, Characterizations for the fractional integral operators in generalized Morrey spaces on Carnot groups, Math. Notes 102 (5) (2017), 127-139.
[10] A. Eroglu, I.B. Dadashova, Potential Operators on Carleson Curves in Morrey spaces, Communications Faculty of Sciences University Of Ankara Series A1: Mathematics and Statistics, 66 (2) (2018), 188-194.
[11] A. Eroglu, J.V. Azizov, V.S. Guliyev, Fractional maximal operator and its commutators in generalized Morrey spaces on Heisenberg group, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 44 (2) (2018), 304-317.
[12] A. Eroglu, G.A. Abasova, V.S. Guliyev, Characterization of parabolic fractional integral and its commutators in parabolic generalized Orlicz-Morrey spaces, Azerb. J. Math. 9 (1) (2019), 92-107.
[13] I.B. Dadashova, C. Aykol, Z. Cakir, A. Serbetci, Potential operators in modified Morrey spaces defined on Carleson curves, Trans. A. Razmadze Math. Inst. 172 (2018), no. 2, 1-15.
[14] V.S. Guliyev, Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl. Art. ID 503948, 1-20, 2009.
[15] V.S. Guliyev, J.J. Hasanov, Y. Zeren, Necessary and sufficient conditions for the boundedness of the Riesz potential in modified Morrey spaces, J. Math. Inequal. 5 (4) (2011), 491-506.
[16] V.S. Guliyev, Generalized local Morrey spaces and fractional integral operators with rough kernel, J. Math. Sci. (N. Y.) 193 (2) (2013), 211-227.
[17] V.S. Guliyev, Y. Sawano, Linear and sublinear operators on generalized Morrey spaces with non-doubling measures, Publ. Math. Debrecen 83 (3) (2013), 303-327.
[18] H. Gunawan, A note on the generalized fractional integral operators, J. Indones. Math. Soc. 9 (2003), 39-43.
[19] A.Yu. Karlovich, Maximal operators on variable Lebesgue spaces with weights related to oscillations of Carleson curves, Math. Nachr. 283 (1) (2010), 85-93.
[20] V. Kokilashvili, Fractional integrals on curves, (Russian) Trudy Tbliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 95 (1990), 56-70.
[21] V. Kokilashvili, A. Meskhi, Fractional integrals on measure Spaces, Frac. Calc. Appl. Anal. 4 (4) (2001), 1-24.
[22] V. Kokilashvili, and A. Meskhi, Boundedness of Maximal and Singular Operators in Morrey Spaces with Variable Exponent, Arm. J. Math. (Electronic) 1 (1) (2008), 18-28.
[23] V. Kokilashvili and S. Samko, Boundedness of maximal operators and potential operators on Carleson curves in Lebesgue spaces with variable exponent, Acta Math. Sin. (English Ser.) 24 (11) (2008), 1775-1800.
[24] V. Kokilashvili, S. Samko, Sobolev theorem for potentials on Carleson curves in variable Lebesgue spaces, Mem. Dierential Equations Math. Phys. 33 (2004), 157-158.
[25] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.
[26] N. Samko, Weighted Hardy and singular operators in Morrey spaces, J. Math. Anal. Appl. 350 (1) (2009), 56-72.
[27] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.

