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Abstract

In this paper we study the fractional maximal operator Mα in the local generalized Mor-
rey space LM

{t0}
p,ϕ (Γ) and the generalized Morrey space Mp,ϕ(Γ) defined on Carleson curves

Γ, respectively. For the operator Mα we shall give a characterization the strong and weak
Spanne-Guliyev type boundedness on LM

{t0}
p,ϕ (Γ) and the strong and weak Adams-Guliyev

type boundedness on Mp,ϕ(Γ).
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1 Introduction

Morrey spaces were introduced by C. B. Morrey [25] in 1938 in connection with certain problems in
elliptic partial differential equations and calculus of variations. Later, Morrey spaces found impor-
tant applications to Navier-Stokes and Schrödinger equations, elliptic problems with discontinuous
coefficients, and potential theory.

The main purpose of this paper is to establish the boundedness of fractional maximal operator

Mα in local generalized Morrey spaces LM
{x0}
p,ϕ (Γ) defined on Carleson curves Γ. We study Spanne-

Guliyev type boundedness of the operator Mα from LM
{x0}
p,ϕ1 (Γ) to LM

{x0}
q,ϕ2 (Γ), 1 < p < q < ∞,

and from the space LM
{x0}
1,ϕ1

(Γ) to the weak space WLM
{x0}
q,ϕ2 (Γ), 1 < q < ∞. Also we study

Adams-Guliyev type boundedness of the operator Mα from generalized Morrey spaces M
p,ϕ

1
p

(Γ)

to M
q,ϕ

1
q

(Γ), 1 < p < q < ∞, and from the space M1,ϕ(Γ) to the weak space WM
q,ϕ

1
q

(Γ),

1 < q < ∞. We shall give a characterization for the Spanne-Guliyev and Adams-Guliyev type
boundedness of the operator Mα on the generalized Morrey spaces, including weak versions.

By A . B we mean that A ≤ CB with some positive constant C independent of appropriate
quantities. If A . B and B . A, we write A ≈ B and say that A and B are equivalent.

2 Preliminaries

Let Γ = {t ∈ C : t = t(s), 0 ≤ s ≤ l ≤ ∞} be a rectifiable Jordan curve in the complex plane C
with arc-length measure ν(t) = s, here l = νΓ = lengths of Γ. We denote

Γ(t, r) = Γ ∩B(t, r), t ∈ Γ, r > 0,
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where B(t, r) = {z ∈ C : |z − t| < r}.
A rectifiable Jordan curve Γ is called a Carleson curve if the condition

νΓ(t, r) ≤ c0r

holds for all t ∈ Γ and r > 0, where the constant c0 > 0 does not depend on t and r. Let Lp(Γ),
1 ≤ p <∞ be the space of measurable functions on Γ with finite norm

‖f‖Lp(Γ) =

(∫
Γ

|f(t)|pdν(t)

)1/p

.

Definition 2.1. Let 1 ≤ p < ∞, 0 ≤ λ ≤ 1, [r]1 = min{1, r}. We denote by Lp,λ(Γ) the Morrey

space, and by L̃p,λ(Γ) the modified Morrey space, the set of locally integrable functions f on Γ
with the finite norms

‖f‖Lp,λ(Γ) = sup
t∈Γ,r>0

r−
λ
p ‖f‖Lp(Γ(t,r)), ‖f‖L̃p,λ(Γ) = sup

t∈Γ,r>0
[r]
−λp
1 ‖f‖Lp(Γ(t,r))

respectively.

Note that (see [13, 15]) Lp,0(Γ) = L̃p,0(Γ) = Lp(Γ),

L̃p,λ(Γ) = Lp,λ(Γ) ∩ Lp(Γ) and ‖f‖L̃p,λ(Γ) = max{‖f‖Lp,λ(Γ), ‖f‖Lp(Γ)}

and if λ < 0 or λ > 1, then Lp,λ(Γ) = L̃p,λ(Γ) = Θ, where Θ is the set of all functions equivalent
to 0 on Γ.

We denote by WLp,λ(Γ) the weak Morrey space, and by WL̃p,λ(Γ) the modified Morrey space,
as the set of locally integrable functions f on Γ with finite norms

‖f‖WLp,λ(Γ) = sup
β>0

β sup
t∈Γ,r>0

(
r−λ

∫
{τ∈Γ(t,r): |f(τ)|>β}

dν(τ)

)1/p

,

‖f‖WL̃p,λ(Γ) = sup
β>0

β sup
t∈Γ,r>0

(
[r]−λ1

∫
{τ∈Γ(t,r): |f(τ)|>β}

dν(τ)

)1/p

.

Let f ∈ Lloc1 (Γ). The fractional maximal operator Mα and the potential operator Iα on Γ are
defined by

Mαf(t) = sup
t>0

(νΓ(t, r))−1+α

∫
Γ(t,r)

|f(τ)|dν(τ),

and

Iαf(t) =

∫
Γ

f(τ)dν(τ)

|t− τ |1−α
, 0 < α < 1,

respectively.
Fractional maximal and potential operators in various spaces defined on Carleson curves has

been widely studied by many authors (see, for example [3, 4, 19, 20, 21, 22, 23, 24, 26]).
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N. Samko [26] studied the boundedness of the maximal operator M = M0 defined on quasi-
metric measure spaces, in particular on Carleson curves in Morrey spaces Lp,λ(Γ):
Theorem A. Let Γ be a Carleson curve, 1 < p < ∞ and 0 ≤ λ ≤ 1. Then M is bounded from
Lp,λ(Γ) to Lp,λ(Γ).

V. Kokilashvili and A. Meskhi [22] studied the boundedness of the operatorsMα and Iα defined
on quasimetric measure spaces, in particular on Carleson curves in Morrey spaces and proved the
following:
Theorem B. Let Γ be a Carleson curve, 1 < p < q < ∞, 0 < α < 1, 0 < λ1 <

p
q , λ1

p = λ2

q and
1
p −

1
q = α. Then the operators Mα and Iα are bounded from the spaces Lp,λ1(Γ) to Lq,λ2(Γ).

The following Adams boundedness (see [1]) of the operatorsMα and Iα in Morrey space defined
on Carleson curves was proved in [10].
Theorem C. Let Γ be a Carleson curve, 0 < α < 1, 0 ≤ λ < 1− α and 1 ≤ p < 1−λ

α .

1) If 1 < p < 1−λ
α , then the condition 1

p −
1
q = α

1−λ is sufficient and in the case of infinite curve

also necessary for the boundedness of the operators Mα and Iα from Lp,λ(Γ) to Lq,λ(Γ).
2) If p = 1, then the condition 1 − 1

q = α
1−λ is sufficient and in the case of infinite curve also

necessary for the boundedness of the operators Mα and Iα from L1,λ(Γ) to WLq,λ(Γ).
The following Adams boundedness of the operators Mα and Iα in modified Morrey space

L̃p,λ(Γ) defined on Carleson curves was proved in [13], see also [15].
Theorem D. Let Γ be a Carleson curve, 0 < α < 1, 0 ≤ λ < 1− α and 1 ≤ p < 1−λ

α .

1) If 1 < p < 1−λ
α , then the condition α ≤ 1

p −
1
q ≤

α
1−λ is sufficient and in the case of infinite

curve also necessary for the boundedness of the operators Mα and Iα from L̃p,λ(Γ) to L̃q,λ(Γ).
2) If p = 1, then the condition α ≤ 1 − 1

q ≤
α

1−λ is sufficient and in the case of infinite curve

also necessary for the operators Mα and Iα from L̃1,λ(Γ) to WL̃q,λ(Γ).

3 Local generalized Morrey spaces

We find it convenient to define the local generalized Morrey spaces in the form as follows, see [16].

Definition 3.1. Let 1 ≤ p <∞ and ϕ(t, r) be a positive measurable function on Γ× (0,∞). Fixed

t0 ∈ Γ, we denote by LM
{t0}
p,ϕ (Γ) (WLM

{x0}
p,ϕ (Γ)) the local generalized Morrey space (the weak local

generalized Morrey space), the space of all functions f ∈ Lloc
p (Γ) with finite quasinorm

‖f‖
LM

{t0}
p,ϕ (Γ)

= sup
r>0

1

ϕ(t0, r)

1

(νΓ(t0, r))
1
p

‖f‖Lp(Γ(t0,r))

(
‖f‖

WLM
{t0}
p,ϕ (Γ)

= sup
r>0

1

ϕ(t0, r)

1

(νΓ(t0, r))
1
p

‖f‖WLp(Γ(t0,r))

)
.

Definition 3.2. Let 1 ≤ p <∞ and ϕ(t, r) be a positive measurable function on Γ× (0,∞). The
generalized Morrey space Mp,ϕ(Γ) is defined of all functions f ∈ Llocp (Γ) by the finite norm

‖f‖Mp,ϕ = sup
t∈Γ,r>0

1

ϕ(t, r)

1

(νΓ(t, r))
1
p

‖f‖Lp(Γ(t,r)).
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Also the weak generalized Morrey space WMp,ϕ(Γ) is defined of all functions f ∈ Llocp (Γ) by the
finite norm

‖f‖WMp,ϕ
= sup
t∈Γ,r>0

1

ϕ(t, r)

1

(νΓ(t, r))
1
p

‖f‖WLp(Γ(t,r)).

It is natural, first of all, to find conditions ensuring that the spaces LM
{t0}
p,ϕ (Γ) and Mp,ϕ(Γ) are

nontrivial, that is consist not only of functions equivalent to 0 on Γ.

Lemma 3.1. Let t0 ∈ Γ and ϕ(t, r) be a positive measurable function on Γ× (0,∞). If

sup
r<τ<∞

1

ϕ(t0, r)

1

(νΓ(t0, r))
1
p

=∞ for some r > 0, (3.1)

then LM
{t0}
p,ϕ (Γ) = Θ.

Proof. Let (3.1) be satisfied and f be not equivalent to zero. Then ‖f‖Lp(Γ(t0,r)) > 0 for some
r > 0, hence

‖f‖
LM

{t0}
p,ϕ
≥ sup
r<τ<∞

1

ϕ(t0, τ)

1

(νΓ(t0, τ))
1
p

‖f‖Lp(Γ(t0,τ))

≥ ‖f‖Lp(Γ(t0,r))
sup

r<τ<∞

1

ϕ(t0, τ)

1

(νΓ(t0, τ))
1
p

.

Therefore ‖f‖
LM

{t0}
p,ϕ

=∞. q.e.d.

Remark 3.3. We denote by Ωp,loc the sets of all positive measurable functions ϕ on Γ × (0,∞)
such that for all r > 0, ∥∥∥ 1

ϕ(t0, τ)

1

(νΓ(t0, τ))
1
p

∥∥∥
L∞(r,∞)

<∞.

In what follows, keeping in mind Lemma 3.1, for the non-triviality of the space LM
{t0}
p,ϕ (Γ) we

always assume that ϕ ∈ Ωp,loc.

Lemma 3.2. Let ϕ(t, r) be a positive measurable function on Γ× (0,∞).

(i) If

sup
r<τ<∞

1

ϕ(t, τ)

1

(νΓ(t, τ))
1
p

=∞ for some r > 0 and for all t ∈ Γ, (3.2)

then Mp,ϕ(Γ) = Θ.

(ii) If

sup
0<τ<r

ϕ(t, τ)−1 =∞ for some r > 0 and for all t ∈ Γ, (3.3)

then Mp,ϕ(Γ) = Θ.
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Proof. (i) Let (3.2) be satisfied and f be not equivalent to zero. Then
supt∈Γ ‖f‖Lp(Γ(t,τ)) > 0 for some r > 0, hence

‖f‖Mp,ϕ
≥ sup

t∈Γ
sup

r<τ<∞

1

ϕ(t, τ)

1

(νΓ(t, τ))
1
p

‖f‖Lp(Γ(t,τ))

≥ sup
t∈Γ
‖f‖Lp(Γ(t,τ)) sup

r<τ<∞

1

ϕ(t, τ)

1

(νΓ(t, τ))
1
p

.

Therefore ‖f‖Mp,ϕ
=∞.

(ii) Let f ∈Mp,ϕ(Γ) and (3.3) be satisfied. Then there are two possibilities:

Case 1: sup0<τ<r ϕ(t, τ)−1 =∞ for all r > 0.

Case 2: sup0<τ<r ϕ(t, τ)−1 <∞ for some s ∈ (0, r).
For Case 1, by Lebesgue differentiation theorem, for almost all t ∈ Γ,

lim
r→0+

‖fχΓ(t,r)‖Lp
‖χΓ(t,r)‖Lp

= |f(t)|. (3.4)

We claim that f(t) = 0 for all those t. Indeed, fix t and assume |f(t)| > 0. Then by (3.4) there
exists t0 > 0 such that

1

(νΓ(t, τ))
1
p

‖f‖Lp(Γ(t,τ)) ≥ 2−1c
1
p

2 |f(t)|

for all 0 < τ ≤ t0. Consequently,

‖f‖Mp,ϕ
≥ sup

0<τ<t0

1

ϕ(t, τ)

1

(νΓ(t, τ))
1
p

‖f‖Lp(Γ(t,τ)) ≥ 2−1c
1
p

2 |f(t)| sup
0<τ<t0

ϕ(t, r)−1.

Hence ‖f‖Mp,ϕ
=∞, so f /∈Mp,ϕ(Γ) and we have arrived at a contradiction.

Note that Case 2 implies that sups<τ<τ ϕ(t, τ)−1 =∞, hence

sup
s<τ<∞

1

ϕ(t, τ)

1

(νΓ(t, τ))
1
p

≥ sup
s<τ<r

1

ϕ(t, τ)

1

(νΓ(t, τ))
1
p

≥ 1

(νΓ(t, r))
1
p

sup
s<τ<r

ϕ(t, τ)−1 =∞,

which is the case in (i). q.e.d.

Remark 3.4. We denote by Ωp the sets of all positive measurable functions ϕ on Γ× (0,∞) such
that for all r > 0,

sup
t∈Γ

∥∥∥ 1

ϕ(t, τ)

1

(νΓ(t, τ))
1
p

∥∥∥
L∞(r,∞)

<∞, and sup
t∈Γ

∥∥∥ϕ(t, τ)−1
∥∥∥
L∞(0,r)

<∞,

respectively. In what follows, keeping in mind Lemma 3.2, we always assume that ϕ ∈ Ωp.
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A function ϕ : (0,∞)→ (0,∞) is said to be almost increasing (resp. almost decreasing) if there
exists a constant C > 0 such that

ϕ(r) ≤ Cϕ(s) (resp. ϕ(r) ≥ Cϕ(s)) for r ≤ s.

Let 1 ≤ p < ∞. Denote by Gp the the set of all almost decreasing functions ϕ : (0,∞) → (0,∞)

such that t ∈ (0,∞) 7→ t
1
pϕ(t) ∈ (0,∞) is almost increasing.

Seemingly the requirement ϕ ∈ Gp is superfluous but it turns out that this condition is natu-
ral. Indeed, Nakai established that there exists a function ρ such that ρ itself is decreasing, that

ρ(t)tn/p ≤ ρ(T )Tn/p for all 0 < t ≤ T <∞ and that LM
{t0}
p,ϕ (Γ) = LM

{t0}
p,ρ (Γ), Mp,ϕ(Γ) = Mp,ρ(Γ).

By elementary calculations we have the following, which shows particularly that the spaces

LM
{t0}
p,ϕ , WLM

{t0}
p,ϕ , Mp,ϕ(Γ) and WMp,ϕ(Γ) are not trivial, see for example, [8, 9].

Lemma 3.3. Let ϕ ∈ Gp, 1 ≤ p < ∞, Γ0 = Γ(t0, r0) and χ
Γ0

is the characteristic function of the

ball Γ0, then χ
Γ0
∈ LM{t0}p,ϕ (Γ) ∩Mp,ϕ(Γ). Moreover, there exists C > 0 such that

1

ϕ(r0)
≤ ‖χ

Γ0
‖
WLM

{t0}
p,ϕ
≤ ‖χ

Γ0
‖
LM

{t0}
p,ϕ
≤ C

ϕ(r0)

and
1

ϕ(r0)
≤ ‖χ

Γ0
‖WMp,ϕ

≤ ‖χ
Γ0
‖Mp,ϕ

≤ C

ϕ(r0)
.

Proof. Let ϕ ∈ Gp, 1 ≤ p <∞, Γ0 = Γ(t0, r0) denote an arbitrary ball in Γ. It is easy to see that

‖χ
Γ0
‖
WLM

{t0}
p,ϕ

= sup
r>0

1

ϕ(r)

( |Γ(t0, r) ∩ Γ0|
νΓ(t0, r)

)1/p

≥ 1

ϕ(r0)

( |Γ0 ∩ Γ0|
|Γ0|

)1/p

=
1

ϕ(r0)
.

Now, if r ≤ r0, then ϕ(r0) ≤ Cϕ(r) and

1

ϕ(r)

( |Γ(t0, r) ∩ Γ0|
νΓ(t0, r)

)1/p

≤ 1

ϕ(r)
≤ C

ϕ(r0)

for all t ∈ Γ.
On the other hand, if r0 ≤ r, we have ϕ(r0)r

1/p
0 ≤ Cϕ(r)r1/p for all t ∈ Γ and

1

ϕ(r)

( |Γ(t0, r) ∩ Γ0|
νΓ(t0, r)

)1/p

=
|Γ(t0, r) ∩ Γ0|1/p

c
1/p
2 ϕ(r)r1/p

≤ |Γ0|1/p

c
1/p
2 ϕ(r)r1/p

=
r

1/p
0

ϕ(r)r1/p
≤ C

ϕ(r0)

for all x ∈ Γ. This completes the proof. q.e.d.
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4 Fractional maximal operator in the spaces LM
{t0}
p,ϕ (Γ) and Mp,ϕ(Γ)

In this section, we give a characterization for the Spanne-Guliyev type boundedness of the

operatorMα on the local generalized Morrey spaces LM
{t0}
p,ϕ (Γ) and the generalized Morrey spaces

Mp,ϕ(Γ), respectively, including weak versions. We give also a characterization for the Adams-
Guliyev and Adams-Gunawan type boundedness of the operator Mα on the generalized Morrey
spaces Mp,ϕ(Γ), including weak versions.

We denote by L∞,v(0,∞) the space of all functions g(t), t > 0 with finite norm

‖g‖L∞,v(0,∞) = ess sup
t>0

v(t)g(t)

and L∞(0,∞) ≡ L∞,1(0,∞). Let M(0,∞) be the set of all Lebesgue-measurable functions on
(0,∞) and M+(0,∞) its subset consisting of all nonnegative functions on (0,∞). We denote by
M+(0,∞;↑) the cone of all functions in M+(0,∞) which are non-decreasing on (0,∞) and

A =

{
ϕ ∈M+(0,∞; ↑) : lim

t→0+
ϕ(t) = 0

}
.

Let u be a continuous and non-negative function on (0,∞). We define the supremal operator Su
on g ∈M(0,∞) by

(Sug)(t) := ‖u g‖L∞(t,∞), t ∈ (0,∞).

The following theorem was proved in [5].

Theorem 4.1. Let v1, v2 be non-negative measurable functions satisfying 0 < ‖v1‖L∞(t,∞) < ∞
for any t > 0 and let u be a continuous non-negative function on (0,∞).

Then the operator Su is bounded from L∞,v1
(0,∞) to L∞,v2

(0,∞) on the cone A if and only if∥∥∥v2Su

(
‖v1‖−1

L∞(·,∞)

)∥∥∥
L∞(0,∞)

<∞. (4.1)

4.1 Spanne-Guliyev type result

The following Guliyev local estimate for the fractional maximal operatorMα is true, see for exam-
ple, [2, 14].

Lemma 4.1. Let Γ be a Carleson curve, 1 ≤ p < q <∞, 0 ≤ α < 1, 1
p −

1
q = α and t0 ∈ Γ. Then

for p > 1 and any r > 0 the inequality

‖Mαf‖Lp(Γ(t0,r)) . ‖f‖Lp(Γ(t0,2r)) + r
1
p sup
τ>2r

τ−1‖f‖L1(Γ(t0,τ)) (4.2)

holds for all f ∈ Lloc
p (Γ).

Moreover for p = 1 the inequality

‖Mαf‖WL1(Γ(t0,r)) . ‖f‖L1(Γ(t0,2r)) + r sup
τ>2r

τ−1‖f‖L1(Γ(t0,τ)) (4.3)

holds for all f ∈ Lloc
1 (Γ).
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Proof. Let 1 < p < q <∞, 0 < α < 1, 1
p −

1
q = α. For arbitrary ball Γ(t0, r) let f = f1 + f2, where

f1 = fχΓ(t0,2r) and f2 = fχ {(Γ(t0,2r))
.

‖Mαf‖Lp(Γ(t0,r)) ≤ ‖M
αf1‖Lp(Γ(t0,r)) + ‖Mαf2‖Lp(Γ(t0,r)).

By the continuity of the operator Mα : Lp(Γ)→ Lq(Γ) from Theorem C we have

‖Mαf1‖Lq(Γ(t0,r)) . ‖f‖Lp(Γ(t0,2r)).

Let y be an arbitrary point from Γ(t0, τ). If Γ(y, τ) ∩ {
(Γ(t0, 2r)) 6= ∅, then τ > r. Indeed, if

z ∈ Γ(y, τ) ∩ {
(Γ(t0, 2r)), then τ > |y − z| ≥ |t− z| − |t− y| > 2r − r = r.

On the other hand, Γ(y, τ)∩ {
(Γ(t0, 2r)) ⊂ Γ(t0, 2τ). Indeed, z ∈ Γ(y, τ)∩ {

(Γ(t0, 2r)), then we
get |t− z| ≤ |y − z|+ |t− y| < τ + r < 2τ .

Hence

Mαf2(y) = sup
τ>0

1(
νΓ(t0, τ)

)1−α ∫
Γ(y,τ)∩ {(Γ(t0,2r))

|f(z)|dν(z)

≤ 2 sup
τ>r

1(
νΓ(t0, 2τ)

)1−α ∫
Γ(t0,2τ)

|f(z)|dν(z)

= 2 sup
τ>2r

1(
νΓ(t0, τ)

)1−α ∫
Γ(t0,τ)

|f(z)|dν(z) ≤ 2 sup
τ>2r

τ−1+α

∫
Γ(t0,τ)

|f(z)|dν(z).

Therefore, for all y ∈ Γ(t0, τ) we have

Mαf2(y) ≤ 2 sup
τ>2r

τ−1+α

∫
Γ(t0,τ)

|f(z)|dν(z). (4.4)

Thus

‖Mαf‖Lp(Γ(t0,r)) . ‖f‖Lp(Γ(t0,2r)) + r
1
p

(
sup
τ>2r

τ−1+α

∫
Γ(t0,τ)

|f(z)|dν(z)

)
.

Let p = 1. It is obvious that for any ball Γ(t0, r)

‖Mαf‖WL1(Γ(t0,r)) ≤ ‖M
αf1‖WL1(Γ(t0,r)) + ‖Mαf2‖WL1(Γ(t0,r)).

By the continuity of the operator Mα : L1(Γ)→WLq(Γ) from Theorem C we have

‖Mαf1‖WL1(Γ) . ‖f‖L1(Γ(t0,2r)).

Then by (4.4) we get the inequality (4.3).
q.e.d.

Lemma 4.2. Let Γ be a Carleson curve, 1 ≤ p < q <∞, 0 ≤ α < 1, 1
p −

1
q = α and t0 ∈ Γ. Then

for p > 1 and any r > 0 in Γ, the inequality

‖Mαf‖Lq(Γ(t0,r)) . r
1
q sup
τ>2r

τ−
1
q ‖f‖Lp(Γ(t0,τ)) (4.5)
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holds for all f ∈ Lloc
p (Γ).

Moreover for p = 1 the inequality

‖Mαf‖WL1(Γ(t0,r)) . r
1
q sup
τ>2r

τ−
1
q ‖f‖L1(Γ(t0,τ)) (4.6)

holds for all f ∈ Lloc
1 (Γ).

Proof. Let 1 < p < q <∞, 0 ≤ α < 1, 1
p −

1
q = α. Denote

M1 : = r
1
q sup
τ>2r

τ−1+α

∫
Γ(t0,r)

|f(z)|dν(z),

M2 : = ‖f‖Lp(Γ(t0,2r)).

Applying Hölder’s inequality, we get

M1 . r
1
q sup
τ>2r

τ−
1
q

(∫
Γ(t0,τ)

|f(z)|pdν(z)

) 1
p

.

On the other hand,

r
1
q sup
τ>2r

τ−
1
q

(∫
Γ(t0,τ)

|f(z)|pdν(z)

) 1
p

& r
1
q

(
sup
τ>2r

τ−
1
q

)
‖f‖Lp(Γ(t0,2r)) ≈M2.

Since by Lemma 4.1
‖Mαf‖Lp(Γ(t0,r)) ≤M1 +M2,

we arrive at (4.5).
Let p = 1. The inequality (4.6) directly follows from (4.3). q.e.d.

For the operatorMα the following Spanne-Guliyev type result on the space LM
{t0}
p,ϕ (Γ) is valid

(see [16]).

Theorem 4.2. Let Γ be a Carleson curve, 1 ≤ p < q < ∞, 0 ≤ α < 1, 1
p −

1
q = α, t0 ∈ Γ,

ϕ1 ∈ Ωp,loc, ϕ2 ∈ Ωq,loc and (ϕ1, ϕ2) satisfies the condition

sup
r<τ<∞

τα−
1
p ess inf
τ<s<∞

ϕ1(t0, s) s
1
p ≤ C ϕ2(t0, r), (4.7)

where C does not depend on r. Then for p > 1, the operator Mα is bounded from LM
{t0}
p,ϕ1 (Γ) to

LM
{t0}
q,ϕ2 (Γ) and for p = 1, the operator Mα is bounded from LM

{t0}
1,ϕ1

(Γ) to WLM
{t0}
q,ϕ2 (Γ).
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Proof. By Theorem 4.1 and Lemma 4.2 we get

‖Mαf‖
LM

{t0}
p,ϕ2

(Γ)
. sup

r>0
ϕ2(t0, r)

−1 sup
τ>r

τ−
1
p ‖f‖Lp(Γ(t0,τ))

. sup
r>0

ϕ1(t, r)−1 r−
1
p ‖f‖Lp(Γ(t0,r)) = ‖f‖

LM
{t0}
p,ϕ1

(Γ)
,

if p ∈ (1,∞) and

‖Mαf‖
WLM

{t0}
p,ϕ2

(Γ)
. sup

r>0
ϕ2(t0, r)

−1 sup
τ>r

τ−1‖f‖L1(Γ(t0,r))

. sup
r>0

ϕ1(t, r)−1 r−1 ‖f‖L1(Γ(t0,r)) = ‖f‖
LM

{t0}
1,ϕ1

(Γ)
,

if p = 1. q.e.d.

From Theorem 4.2 we get (see [14]) the following

Corollary 4.1. Let Γ be a Carleson curve, 1 ≤ p < q < ∞, 0 ≤ α < 1, 1
p −

1
q = α and ϕ1 ∈ Ωp,

ϕ2 ∈ Ωq satisfies the condition

sup
r<τ<∞

τ−
1
q ess inf
τ<s<∞

ϕ1(t, s) s
1
p ≤ C ϕ2(t, r), (4.8)

where C does not depend on t and r. Then for p > 1, the operator Mα is bounded from Mp,ϕ1(Γ)
to Mq,ϕ2

(Γ) and for p = 1, the operator Mα is bounded from M1,ϕ1
(Γ) to WMq,ϕ2

(Γ).

For proving our main results, we need the following estimate.

Lemma 4.3. Let Γ be a Carleson curve and Γ0 := Γ(t0, r0), then rα0 ≤ CMαχΓ0
(t) for every

t ∈ Γ0.

Proof. It is well-known that
Mαf(t) ≤ 21−αMαf(t), (4.9)

where Mα(f)(t) = sup
B3t
|B|−1+α

∫
B
|f(τ)|dν(τ).

Now let t ∈ Γ0. By using (4.9), we get

MαχΓ0
(t) ≥ CMαχΓ0

(t) ≥ C sup
B3t
|B|−1+α|B ∩ Γ0|

≥ C|Γ0|−1+α|Γ0 ∩ Γ0| = Crα0 .

q.e.d.

The following theorem is one of our main results.

Theorem 4.3. Let Γ be a Carleson curve, 0 < α < 1, t0 ∈ Γ and p, q ∈ [1,∞).
1. If 1 ≤ p < 1

α and 1
q = 1

p − α, then the condition (4.7) is sufficient for the boundedness of

the operator Mα from LM
{t0}
p,ϕ1 (Γ) to WLM

{t0}
q,ϕ2 (Γ). Moreover, if 1 < p < 1

α , the condition (4.7) is

sufficient for the boundedness of the operator Mα from LM
{t0}
p,ϕ1 (Γ) to LM

{t0}
q,ϕ2 (Γ).
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2. If the function ϕ1 ∈ Gp, then the condition

rαϕ1(r) ≤ Cϕ2(r), (4.10)

for all r > 0, where C > 0 does not depend r, is necessary for the boundedness of the operatorMα

from LM
{t0}
p,ϕ1 (Γ) to WLM

{t0}
q,ϕ2 (Γ) and LM

{t0}
p,ϕ1 (Γ) to LM

{t0}
q,ϕ2 (Γ).

3. Let 1 ≤ p < 1
α and 1

q = 1
p − α. If ϕ1 ∈ Gp, then the condition (4.10) is necessary and

sufficient for the boundedness of the operator Mα from LM
{t0}
p,ϕ1 (Γ) to WLM

{t0}
q,ϕ2 (Γ). Moreover, if

1 < p < Q
α , then the condition (4.10) is necessary and sufficient for the boundedness of the operator

Mα from LM
{t0}
p,ϕ1 (Γ) to LM

{t0}
q,ϕ2 (Γ).

Proof. The first part of the theorem proved in Theorem 4.2.
We shall now prove the second part. Let Γ0 = Γ(t0, r0) and t ∈ Γ0. By Lemma 4.3 we have

rα0 ≤ CMαχ
Γ0

(r). Therefore, by Lemma 3.3 and Lemma 4.3

rα0 . (ν(Γ0))−
1
p ‖MαχΓ0

‖Lq(Γ0) . ϕ2(r0)‖Mαχ
Γ0
‖Mq,ϕ2

. ϕ2(r0)‖χ
Γ0
‖Mp,ϕ1

.
ϕ2(r0)

ϕ1(r0)

or

rα0 .
ϕ2(r0)

ϕ1(r0)
for all r0 > 0⇐⇒ rα0 ϕ1(r0) . ϕ2(r0) for all r0 > 0.

Since this is true for every r0 > 0, we are done.
The third statement of the theorem follows from first and second parts of the theorem. q.e.d.

Remark 4.4. If we take ϕ1(r) = r
λ−1
p and ϕ2(r) = r

µ−1
q at Theorem 4.3, then condition(4.10) is

equivalent to 0 < λ < 1−αp and λ
p = µ

q , respectively. Therefore, we get Theorem B from Theorem
4.3.

4.2 Adams-Guliyev type result

The following Guliyev pointwise estimate plays a key role where we prove our main results.

Theorem 4.5. Let Γ be a Carleson curve, 1 ≤ p <∞, 0 < α < 1 and f ∈ Llocp (Γ). Then

Mαf(t) ≤ CrαMf(t) + C sup
r<s<∞

sα−
1
p ‖f‖Lp(Γ(t,s))ds, (4.11)

where C does not depend on f , t ∈ Γ and r > 0.

Proof. Write f = f1 + f2, where f1 = fχ
Γ(t,2r)

, f2 = fχ
{
(Γ(t,2r))

. Then for all z ∈ Γ

Mαf(z) ≤Mαf1(z) +Mαf2(z).

For Mαf1(t), following Hedberg’s trick (see for instance [27], p. 354), for all z ∈ Γ we obtain
|Mαf1(z)| ≤ C1r

αMf(z). For Mαf2(z) with z ∈ Γ(t, r) from (4.4) we have

Mαf2(z) ≤ 2 sup
s>r

τ−1+α

∫
Γ(t,s)

|f(z)|dν(z) ≤ C sup
r<s<∞

sα−
1
p ‖f‖Lp(Γ(t,s)), (4.12)

which proves (4.11). q.e.d.
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The following is a result of Adams-Guliyev type for the fractional integral on Carleson curves
(see, [14]).

Theorem 4.6. (Adams-Guliyev type result) Let Γ be a Carleson curve, 1 ≤ p < q <∞, 0 < α < 1
p

and let ϕ ∈ Ωp satisfy condition

sup
r<τ<∞

τ−1 ess inf
τ<s<∞

ϕ(t, s) s ≤ C ϕ(t, r), (4.13)

and
sup

r<τ<∞
ταϕ(t, τ)

1
p ≤ Cr−

αp
q−p , (4.14)

where C does not depend on t ∈ Γ and r > 0. Then for p > 1, the operator Mα is bounded from
M
p,ϕ

1
p

(Γ) to M
q,ϕ

1
q

(Γ) and for p = 1, the operator Iα is bounded from M1,ϕ(Γ) to WM
q,ϕ

1
q

(Γ).

Proof. Let 1 ≤ p <∞ and f ∈Mp,ϕ(Γ). By Theorem 4.5 the inequality (4.11) is valid. Then from
condition (4.14) and inequality (4.11) we get

Mαf(t) . rαMf(t) + sup
s>r

sα−
1
p ‖f‖Lp(Γ(t,s))

≤ rαMf(t) + ‖f‖M
p,ϕ

1
p

(Γ) sup
s>r

sα ϕ(t, s)
1
p

≤ rαMf(t) + r−
αp
q−p ‖f‖M

p,ϕ
1
p

(Γ). (4.15)

Hence choosing r =
(M

p,ϕ
1
p

(Γ)

Mf(t)

)
for every t ∈ Γ, we have

Mαf(t) . (Mf(t))
p
q ‖f‖1−

p
q

M
p,ϕ

1
p

(Γ).

Hence the statement of the theorem follows in view of the boundedness of the maximal operator
M in Mp,ϕ(Γ) provided by Theorem 4.2, in virtue of condition (4.13).

‖Mαf‖M
q,ϕ

1
q

(Γ) . ‖f‖
1− pq
M
p,ϕ

1
p

(Γ) sup
t∈Γ, r>0

ϕ(t, r)−
p
q r−

1
q ‖Mf‖

p
q

Lp(Γ(t,r))

. ‖f‖1−
p
q

M
p,ϕ

1
p

(Γ) ‖Mf‖
p
q

M
p,ϕ

1
p

(Γ) . ‖f‖M
p,ϕ

1
p

(Γ),

if 1 < p < q <∞ and

‖Mαf‖WM
q,ϕ

1
q

(Γ) . ‖f‖
1− 1

q

M1,ϕ(Γ) sup
t∈Γ, r>0

ϕ(t, r)−
1
q r−

1
q ‖Mf‖

1
q

WL1(Γ(t,r))

. ‖f‖1−
1
q

M1,ϕ(Γ) ‖Mf‖
1
q

M1,ϕ(Γ) . ‖f‖M1,ϕ(Γ),

if p = 1 < q <∞. q.e.d.

The following theorem is one of our main results.
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Theorem 4.7. Let Γ be a Carleson curve, 0 < α < 1, 1 ≤ p < q <∞ and ϕ ∈ Ωp.
1. If ϕ(t, r) satisfy condition (4.13), then the condition (4.14) is sufficient for the boundedness of

the operator Mα from M
p,ϕ

1
p

(Γ) to WM
q,ϕ

1
q

(Γ). Moreover, if 1 < p < q <∞, then the condition

(4.14) is sufficient for the boundedness of the operator Mα from M
p,ϕ

1
p

(Γ) to M
q,ϕ

1
q

(Γ).

2. If ϕ ∈ Gp, then the condition

rαϕ(r)
1
p ≤ Cr−

αp
q−p , (4.16)

for all r > 0, where C > 0 does not depend r, is necessary for the boundedness of the operatorMα

from M
p,ϕ

1
p

(Γ) to WM
q,ϕ

1
q

(Γ) and from M
p,ϕ

1
p

(Γ) to M
q,ϕ

1
q

(Γ).

3. If ϕ ∈ Gp, then the condition (4.16) is necessary and sufficient for the boundedness of the
operatorMα from M

p,ϕ
1
p

(Γ) to WM
q,ϕ

1
q

(Γ). Moreover, if 1 < p < q <∞, then the condition (4.16)

is necessary and sufficient for the boundedness of the operator Mα from M
p,ϕ

1
p

(Γ) to M
q,ϕ

1
q

(Γ).

Proof. The first part of the theorem is a corollary of Theorem 4.6.
We shall now prove the second part. Let Γ0 = Γ(t0, r0) and t ∈ Γ0. By Lemma 4.3 we have

rα0 .MαχΓ0
(t). Therefore, by Lemma 3.3 and Lemma 4.3 we have

rα0 . (ν(Γ0))−
1
q ‖MαχΓ0

‖Lq(Γ0) . ϕ(r0)
1
q ‖MαχΓ0

‖M
q,ϕ

1
q

(Γ)

. ϕ(r0)
1
q ‖χ

Γ0
‖M

p,ϕ
1
p

(Γ) . ϕ(r0)
1
q−

1
p

or

rα0 ϕ(r0)
1
p−

1
q . 1 for all r0 > 0⇐⇒ rα0 ϕ(r0)

1
p . r

− αp
q−p

0 .

Since this is true for every t ∈ Γ and r0 > 0, we are done.
The third statement of the theorem follows from first and second parts of the theorem. q.e.d.

4.3 Adams-Gunawan type result

The following is a result of Adams-Gunawan type for the fractional integral on Carleson curves
(see, [17, 18]).

Theorem 4.8. (Adams-Gunawan type result). Let Γ be a Carleson curve, 0 < α < 1, 1 ≤ p < q <
∞ and ϕ ∈ Ωp satisfy condition (4.13) and

rαϕ(t, r) +

∫ ∞
r

sα−1 ϕ(t, s)ds ≤ Cϕ(t, r)
p
q , (4.17)

where C does not depend on t ∈ Γ and r > 0. Then for p > 1, the operator Mα is bounded from
M
p,ϕ

1
p

(Γ) to M
q,ϕ

1
q

(Γ) and for p = 1, the operator Mα is bounded from M1,ϕ(Γ) to WM
q,ϕ

1
q

(Γ).

Proof. Let 1 ≤ p <∞ and f ∈Mp,ϕ(Γ). By Theorem 4.5 the inequality (4.11) is valid. Then from
condition (4.14) and inequality (4.11) we get

Mαf(t) . rαMf(t) + sup
s>r

sα−
1
p ‖f‖Lp(Γ(t,s))

≤ rαMf(t) + ‖f‖Mp,ϕ(Γ) sup
s>r

sα ϕ(t, s). (4.18)
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Thus, by (4.17) and (4.18) we obtain

Mαf(t) . min
{
ϕ(t, r)

p
q−1Mf(t), ϕ(t, r)

p
q ‖f‖Mp,ϕ(Γ)

}
. sup

r>0
min

{
r
p
q−1Mf(t), r

p
q ‖f‖Mp,ϕ(Γ)

}
= (Mf(t))

p
q ‖f‖1−

p
q

Mp,ϕ(Γ), (4.19)

where we have used that the supremum is achieved when the minimum parts are balanced. From
Theorem 4.2 and (4.19), we get

‖Mαf‖M
q,ϕ

1
q

(Γ) . ‖f‖
1− pq
M
p,ϕ

1
p

(Γ) ‖Mf‖
p
q

M
p,ϕ

1
p

(Γ) . ‖f‖M
p,ϕ

1
p

(Γ),

if 1 < p < q <∞ and

‖Mαf‖WM
q,ϕ

1
q

(Γ) . ‖f‖
1− 1

q

M1,ϕ(Γ) ‖Mf‖
1
q

M1,ϕ(Γ) . ‖f‖M1,ϕ(Γ),

if p = 1 < q <∞. q.e.d.

The following theorem is one of our main results.

Theorem 4.9. Let Γ be a Carleson curve, 0 < α < 1, 1 ≤ p < q <∞ and ϕ ∈ Ωp.
1. If ϕ(t, r) satisfy condition (4.13), then the condition (4.17) is sufficient for the boundedness

of the operator Mα from M
p,ϕ

1
p

(Γ) to M
q,ϕ

1
q

(Γ). Moreover, if 1 < p < q <∞, then the condition

(4.17) is sufficient for the boundedness of the operator Mα from M
p,ϕ

1
p

(Γ) to M
q,ϕ

1
q

(Γ).

2. If ϕ ∈ Gp, then the condition

rαϕ(r)
1
p ≤ Cϕ(r)

1
q , (4.20)

for all r > 0, where C > 0 does not depend r, is necessary for the boundedness of the operatorMα

from M
p,ϕ

1
p

(Γ) to WM
q,ϕ

1
q

(Γ) and from M
p,ϕ

1
p

(Γ) to M
q,ϕ

1
q

(Γ).

3. If ϕ ∈ Gp, then the condition (4.20) is necessary and sufficient for the boundedness of the
operatorMα from M

p,ϕ
1
p

(Γ) to WM
q,ϕ

1
q

(Γ). Moreover, if 1 < p < q <∞, then the condition (4.20)

is necessary and sufficient for the boundedness of the operator Mα from M
p,ϕ

1
p

(Γ) to M
q,ϕ

1
q

(Γ).

Proof. The first part of the theorem is a corollary of Theorem 4.8.
We shall now prove the second part. Let Γ0 = Γ(t0, r0) and t ∈ Γ0. By Lemma 4.3 we have

rα0 ≤ CMαχΓ0
(t). Therefore, by Lemma 3.3 and Lemma 4.3 we have

rα0 . (ν(Γ0))−
1
q ‖Mαχ

Γ0
‖Lq(Γ0) . ϕ(r0)

1
q ‖Mαχ

Γ0
‖M

q,ϕ
1
q

(Γ)

. ϕ(r0)
1
q ‖χ

Γ0
‖M

p,ϕ
1
p

(Γ) . ϕ(r0)
1
q−

1
p

or

rα0 ϕ(r0)
1
p−

1
q . 1 for all r0 > 0⇐⇒ rα0 ϕ(r0)

1
p . ϕ(r0)

1
q .

Since this is true for every t ∈ Γ and r0 > 0, we are done.
The third statement of the theorem follows from first and second parts of the theorem. q.e.d.
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Remark 4.10. If we take ϕ(r) = rλ−1 at Theorem 4.7, then the condition (4.16) is equivalent to
1
p −

1
q = α

1−λ . Therefore, from Theorem 4.7 we get Theorem C.

Remark 4.11. If we take ϕ(r) = [r]λ−1
1 at Theorem 4.7, then the condition (4.16) is equivalent to

α ≤ 1
p −

1
q ≤

α
1−λ . Therefore, from Theorem 4.7 we get Theorem D.
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