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Abstract

In this paper we study the fractional maximal operator M< in the local generalized Mor-
rey space LMgiB}(F) and the generalized Morrey space M, ,(I') defined on Carleson curves
I, respectively. For the operator M we shall give a characterization the strong and weak
Spanne-Guliyev type boundedness on LM,fﬁ,‘f}(F) and the strong and weak Adams-Guliyev
type boundedness on M ,(T).
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1 Introduction

Morrey spaces were introduced by C. B. Morrey [25] in 1938 in connection with certain problems in
elliptic partial differential equations and calculus of variations. Later, Morrey spaces found impor-
tant applications to Navier-Stokes and Schrédinger equations, elliptic problems with discontinuous
coefficients, and potential theory.

The main purpose of this paper is to establish the boundedness of fractional maximal operator
M in local generalized Morrey spaces LM,Ef:} (T") defined on Carleson curves I'. We study Spanne-
Guliyev type boundedness of the operator M from LMéfc?l} (T") to LMq{fo"z} M), 1<p<qg< oo,

and from the space LMl{fp"l} (') to the weak space WLM{,Z‘;} (), 1 < ¢ < oco. Also we study

Adams-Guliyev type boundedness of the operator M from generalized Morrey spaces M 1 (I")
PP

to M 1(I'), 1 < p < g < oo, and from the space M; ,(I') to the weak space WM 1 (I),

a1 a9
1 < ¢ < oco. We shall give a characterization for the Spanne-Guliyev and Adams-Guliyev type

boundedness of the operator M on the generalized Morrey spaces, including weak versions.
By A < B we mean that A < CB with some positive constant C independent of appropriate
quantities. If A < B and B < A, we write A = B and say that A and B are equivalent.

2 Preliminaries

Let T={teC:t=1t(s), 0<s
=5,

I < 0o} be a rectifiable Jordan curve in the complex plane C
with arc-length measure v(t) =v

<
here [ I' = lengths of I". We denote

I'(t,r)y=TNB(t,r), tel, r>0,
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where B(t,r) ={z € C: |z —t| <r}.
A rectifiable Jordan curve I' is called a Carleson curve if the condition

vI'(t,r) < cor

holds for all ¢ € I and r > 0, where the constant ¢y > 0 does not depend on ¢ and r. Let L,(I'),
1 < p < oo be the space of measurable functions on I' with finite norm

Il = ( If(t)”dz/(t))l/p.

Definition 2.1. Let 1 <p < 00, 0 < A <1, [r]y = min{1,7}. We denote by L, »(I') the Morrey
space, and by L, A(I') the modified Morrey space, the set of locally integrable functions f on T’
with the finite norms

_2 _2
||f||pr>\(1") = te?u})>or Pl Ly ) Hf||zm(p) = te?u}lo[?"h "Nz, )

respectively.

Note that (see [13, 15]) L, o(T") = Ly o(I") = Ly(T),

Lpa(L) = Lpa(T) N Ly(T) - and  |[fllz, | ) = max{[|fllz, s | FllL, )}

and if A <0 or A > 1, then L, (') = En)\(F) = O, where O is the set of all functions equivalent
toOonT. _

We denote by WL, »(I') the weak Morrey space, and by WL, »(I') the modified Morrey space,
as the set of locally integrable functions f on I' with finite norms

1/p
Ils, ) =sup B sup ( / dum) ,
' >0 tel,r>0 {rer(t,r): |f(1)|>B}

1/p
||f||pr A() = Sup B sup ([7‘]1)‘/ dV(T)> .
' B>0 tel,r>0 {rer(t,r): |f(1)|>B}

Let f € Li°¢(T"). The fractional maximal operator M and the potential operator Z% on I' are
defined by
M) = spOT () [ dto)
t,r

t>0

and J
T)dv(T
Iof(t) = J(n)dv(r) ), 0<a<l,
e 7=
respectively.
Fractional maximal and potential operators in various spaces defined on Carleson curves has

been widely studied by many authors (see, for example [3, 4, 19, 20, 21, 22, 23, 24, 26]).
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N. Samko [26] studied the boundedness of the maximal operator M = M"Y defined on quasi-
metric measure spaces, in particular on Carleson curves in Morrey spaces Ly, »(I'):

Theorem A. Let I' be a Carleson curve, 1 < p < oo and 0 < X\ < 1. Then M is bounded from
L, () to L, A(T).

V. Kokilashvili and A. Meskhi [22] studied the boundedness of the operators M* and Z¢ defined
on quasimetric measure spaces, in particular on Carleson curves in Morrey spaces and proved the
following:

Theorem B. Let I' be a Carleson curve, 1 <p<qg<oo,0<a<l,0< A < %, % = %2 and
% — % = a. Then the operators M® and I are bounded from the spaces Ly », (I') to Lq »,(T).

The following Adams boundedness (see [1]) of the operators M* and Z* in Morrey space defined
on Carleson curves was proved in [10].

Theorem C. Let I' be a Carleson curve, 0 < a<1,0<A<1l—aandl <p< %

Ifl<p< %, then the condition % - % = 1% 18 sufficient and in the case of infinite curve
also necessary for the boundedness of the operators M* and Z% from Ly A(I") to Ly (T).
2) If p = 1, then the condition 1 — é = 125 18 sufficient and in the case of infinite curve also

necessary for the boundedness of the operators M and Z% from L1 z(T") to WL, A(T).

_ The following Adams boundedness of the operators M® and Z¢ in modified Morrey space
L, (T") defined on Carleson curves was proved in [13], see also [15].

Theorem D. Let T" be a Carleson curve, 0 < a<1,0< A A<l—aandl <p< %

Ifl1<p< %, then the condition a < % — % < 1% is sufficient and in the case of infinite

curve also necessary for the boundedness of the operators M% and I from EP7A(F) to E%)\(F).
2) If p = 1, then the condition a < 1 — % < 125 s sufficient and in the case of infinite curve

also necessary for the operators M® and % from ELA(I‘) to qu,)\(f‘).

3 Local generalized Morrey spaces

We find it convenient to define the local generalized Morrey spaces in the form as follows, see [16].

Definition 3.1. Let 1 < p < oo and ¢(t,r) be a positive measurable function on I" x (0, 00). Fixed

to € I', we denote by LM;f(g} () (WLMgfff}(F)) the local generalized Morrey space (the weak local
generalized Morrey space), the space of all functions f € L;)OC(F) with finite quasinorm

1
1AW g ttor () = SUP £l 2, (T (t0,r))

>0 @(to,7) (UL (g, 7)) 7

1 1

11y ar o) gy = SUD £ 1w L, o, )
(1 ket r>0 @(to7) (VT (t, 7)) 7 e

Definition 3.2. Let 1 < p < oo and ¢(¢,7) be a positive measurable function on T" x (0,00). The
generalized Morrey space M), ,(T') is defined of all functions f € Li*(T') by the finite norm

1 1
I fllag,, = sup £l 2, e,

tel,r>0 Qﬁ(t, T) (VF(t, 7”))

D=
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Also the weak generalized Morrey space WM, ,(T') is defined of all functions f € LI*¢(T") by the
finite norm

1 1
1fllwas, . = sup

I fllwe, @)
tel,r>0 <,0(t,7“) (Vp(tﬂﬁ))% p(L(t,r))

It is natural, first of all, to find conditions ensuring that the spaces LM;L‘,’}(F) and M, ,(I") are
nontrivial, that is consist not only of functions equivalent to 0 on T'.

Lemma 3.1. Let tg € T and ¢(t,7) be a positive measurable function on " x (0, 00). If

1 1
sup
r<T<00 (P(tO, 7‘) (VF(t(h T))%

=oo for some r > 0, (3.1)

then LMS'9Y (1) = ©.

Proof. Let (3.1) be satisfied and f be not equivalent to zero. Then ||f||z,r(ty,ry) > 0 for some
r > 0, hence

1l ppigr > . :
{to} = Sup
LMp.2" = pcrcoo ¢(to, T) (uD(to, 7)) 7

> || £l : :
su '
2 Weuweorn, 2 o605 (o))

112, (v cto,r))

Therefore Hf”LM,ffg} = 00. Q.E.D.

Remark 3.3. We denote by Q, ;o the sets of all positive measurable functions ¢ on I' x (0, c0)
such that for all » > 0,

1 1
I

H o(to, ™) (VT (o, 7))7 =

Loo (7,00)

In what follows, keeping in mind Lemma 3.1, for the non-triviality of the space LMgig}(F) we
always assume that ¢ € €1 joc.

Lemma 3.2. Let ¢(t,7) be a positive measurable function on I'" x (0, c0).

(i) If
1 1
sup - =00 forsomer >0 andforalltel, (3.2)
r<r<oo ¢(t,T) (WD(t, 7))>
then M, ,(I') = ©.
(ii) If
sup ¢(t,7)"' =00 for some r >0 and forallt €T, (3.3)

o<r<r

then M, ,(T') = ©.
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Proof. (i) Let (3.2) be satisfied and f be not equivalent to zero. Then
SUP;cr ||fHLp(F(t7T)) > 0 for some 7 > 0, hence

1
1f1las,,, = sup sup
Mo = el r<r<oo 9(t,T) (VF(t,T))%

1 1
>
- 216111‘) ”fHLp(F(t’T)) r<S}'1£OO @(ta 7_) (I/F(t7 T))

11, ey

T =

Therefore ||f||Mp , =0
(ii) Let f € Mp ,(

I') and (3.3) be satisfied. Then there are two possibilities:
Case 1: supge, o, @(t,7)7!

= oo for all r > 0.

Case 2: supg.,, ¢(t,7)"! < oo for some s € (0,7).
For Case 1, by Lebesgue differentiation theorem, for almost all ¢t € T,

lim ”fXF(t,r)”L,,
r=0+ |Ixree,m L,

=[f(®)]- (3-4)

We claim that f(t) = 0 for all those ¢t. Indeed, fix ¢ and assume |f(¢)| > 0. Then by (3.4) there
exists tg > 0 such that
1

m Iz, ) = 27 eg | (1)l

for all 0 < 7 < ty. Consequently,
1

1 1
f > sup f . >0 1er f(®)| sup got,ril.
Il 2 330, oo Wl 2 276 0] sup, oltor)

Hence Hf”MM, =00, so f ¢ M, ,(I') and we have arrived at a contradiction.

1

Note that Case 2 implies that sup,.,, ¢(t,7)”' = 0o, hence

1 1 1 1
sup > sup
s<r<oo P(t,T) (VF(t,T))% s<r<r P(t,7) (I/F(t,T))%

s p(t7)
(y]_—‘(t7 7’))5 s<T<r

which is the case in (i). Q.E.D.

Remark 3.4. We denote by €, the sets of all positive measurable functions ¢ on I' x (0, c0) such
that for all » > 0,

1 1
sup H
ter lo(t,7) (I (¢, 7))>

< oo, and sup H(p t, T _1H < 00,
Lo (r,00) tel ( ) Lo (0,7)

respectively. In what follows, keeping in mind Lemma 3.2, we always assume that ¢ € (2,,.
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A function ¢ : (0,00) — (0, 00) is said to be almost increasing (resp. almost decreasing) if there
exists a constant C' > 0 such that

p(r) < Cop(s) (resp. p(r) > Cy(s)) forr <s.

Let 1 < p < co. Denote by G, the the set of all almost decreasing functions ¢ : (0,00) — (0,00)
such that ¢t € (0, 00) — t%cp(t) € (0,00) is almost increasing.

Seemingly the requirement ¢ € G, is superfluous but it turns out that this condition is natu-
ral. Indeed, Nakai established that there exists a function p such that p itself is decreasing, that
p()t™/P < p(T)YT™/P for all 0 < t < T < oo and that LMS" (T) = LMS9H (1), M, ,(T) = M, ,(T).

By elementary calculations we have the following, which shows particularly that the spaces
LM;{S}, WLM,;ZQ}, M, (') and WM, ,(T') are not trivial, see for example, [8, 9].

Lemma 3.3. Let p € G, 1 < p < 00, 'y =T'(tg,70) and X, is the characteristic function of the
0
ball I'g, then x € LMéig}(F) N M, ,(I'). Moreover, there exists C' > 0 such that
0

1 C
<
ooy = ey lhwoarier < I s = 20
and
<l waty. < lx o, < —2
(o) ~ Xog WMy o = Xy 1My = ¢(ro)

Proof. Let ¢ € G, 1 < p < 00, I'g =T'(tg,70) denote an arbitrary ball in T". It is easy to see that

= sup
r>0 <p(7‘)

Y

1 <|F(t0,r)ﬂl“0\)1/1’ 1 (\F00F0|)1/P_ 1

1Xcy iy £agfie? VT (to,7) o(ro) \ L] o(r0)’

Now, if 7 < 7, then ¢(rg) < Cp(r) and

1 (|F(to,r) ﬂFO\)l/P < 1 < C
p(r)\ vI(to,r) —p(r) T plro)
forall t €I
On the other hand, if rq < r, we have @(ro)r(l)/p < Co(r)r'/? for all t € T and
1 (lF(to,’l“)ﬂFO|)l/P: \F(to,r)ﬂl"0|1/? < |1"0|1/p _ ’I“é/p < C
p(r) N v(to,m) oMoyt T /Peryrt/e e(r)rt/P T (ro)

for all x € T". This completes the proof. Q.E.D.



Characterizations for the fractional maximal operators on Carleson curves ... 29

4 Fractional maximal operator in the spaces LMéﬁg}(F) and M, (')

In this section, we give a characterization for the Spanne-Guliyev type boundedness of the

operator M® on the local generalized Morrey spaces LM,E{:ZZ} (T") and the generalized Morrey spaces
M, ,(T'), respectively, including weak versions. We give also a characterization for the Adams-
Guliyev and Adams-Gunawan type boundedness of the operator M on the generalized Morrey
spaces M), ,(T'), including weak versions.

We denote by L ., (0,00) the space of all functions g(t), ¢ > 0 with finite norm
91| 2o . (0,00) = €8S supv(t)g(t)
>0

and Lo (0,00) = Loo,1(0,00). Let M(0,00) be the set of all Lebesgue-measurable functions on
(0,00) and 9+ (0,00) its subset consisting of all nonnegative functions on (0,00). We denote by
M (0, 00;1) the cone of all functions in M (0, co) which are non-decreasing on (0, c0) and

A= {go € MT(0,00;1) : t£%1+<p(t) = O} .

Let u be a continuous and non-negative function on (0,00). We define the supremal operator S,
on g € M(0,00) by B

(Sug)(t) = lugllLitoc), t€(0,00).
The following theorem was proved in [5].
Theorem 4.1. Let vy, vo be non-negative measurable functions satisfying 0 < [|v1]|z_(t,00) < 00

for any ¢t > 0 and let u be a continuous non-negative function on (0, 00).
Then the operator .S, is bounded from Leg 4, (0, 00) t0 Log 4, (0, 00) on the cone A if and only if

028 (0L (o) | 0y < (4.1)

4.1 Spanne-Guliyev type result

The following Guliyev local estimate for the fractional maximal operator M is true, see for exam-
ple, [2, 14].

Lemma 4.1. Let I' be a Carleson curve, 1 <p<g< oo, 0 < a <1, 1% — % = and tyg € I'. Then
for p > 1 and any r > 0 the inequality
a 1 _
1M Fllzy waorn S 15Ny @tz + 7% sup 77 sy (4.2)
holds for all f € L;,OC(I‘).
Moreover for p = 1 the inequality
M fllw ooy S N F o eo2m) +7 sup [ PR (4.3)

holds for all f € Li°¢(T).
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Proof. Let 1l <p<g<oo,0<a<l, %— % = «. For arbitrary ball T'(to,r) let f = f1 + f2, where
fi= fXF(t0,27') and fa = fx C(I‘(to,Zr))'
M fll, o)) < IM* fillL, @to,r)) + IM* f2llL, @0,

By the continuity of the operator M* : L,(I') — L4(I") from Theorem C we have
M fillL, oty S IFIL, 0 cto,2r))-

Let y be an arbitrary point from I'(tg, 7). If T'(y,7) N G(F(to,Qr)) # @, then 7 > r. Indeed, if
zeT(y,7)N C(F(to,Qr)), thent>|y—z| >[t—z|—|t—y|>2r—r=r.

On the other hand, I'(y,7) N G(F(to, 2r)) C T'(tg, 27). Indeed, z € T'(y,7) N D(1"(1f0, 2r)), then we
get [t—z| <|ly—z|+t—y| <7471 <27

Hence
1
M faly) =sup———— £(2)ldu(2)
70 (UD(t, 7)) I drte.2n)
1
<2swp o [ |f)i)
m>r (VI (to, 27)) D(t,27)

N S / F(2)]du(z) < 2 sup + 1+ / F(2)ldv(z).
F(t(),‘l') F(to,‘l’)

T>2r (yF(tO)T))l_a T>2r

Therefore, for all y € T'(¢g, 7) we have

Me fy(y) < 2 sup 71+ / o ) (4.4)

T>27

Thus

T>2r

1 — (0%
M Fll, oy S I, meo2r) +77 (SupT " /m )If(Z)IdV(Z)>-
0,T

Let p = 1. It is obvious that for any ball I'(¢g, )

M Fllw Lyt < MM fillw Ly oeo.ry) + M fallw Ly @wio.m)-
By the continuity of the operator M* : L;(I') = W Ly(T'") from Theorem C we have

M fillwra @y S W1y eito,2r))-
Then by (4.4) we get the inequality (4.3).

Q.E.D.

Lemma 4.2. Let T be a Carleson curve, 1 <p<g< oo, 0<a <1, % —
for p > 1 and any r > 0 in I', the inequality

%:aand to € I'. Then

o 1 _1
M fll L, 0oy ST sup 7 | fllz, cto.r) (4.5)
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holds for all f € Ly*°(T).
Moreover for p = 1 the inequality

a 1 _1
M f||WL1(F(t0,r)) Sre 5;1%0 T 4 ||f||L1(F(t0,~r)) (4.6)
T T

holds for all f € Li¢(T).

Proof. Let1<p<q<oo70§a<l,%— = «. Denote

1
q

M= r sup T*HO‘/ |f(2)|dv(2),
F(to,T)

T>2r

My = |fllz,@to,2r)-

Applying Holder’s inequality, we get

On the other hand,

1
p— / @) Pdv(z)
T>2r (to,T)
1 _1
> ra (sup T q> ||fHL,,(F(t0,21")) ~ M.
T>2r
Since by Lemma 4.1

M fllz, o)) < M1+ My,

we arrive at (4.5).
Let p = 1. The inequality (4.6) directly follows from (4.3). Q.E.D.

For the operator M the following Spanne-Guliyev type result on the space LM;L?} (T") is valid

(see [16]).

Theorem 4.2. Let " be a Carleson curve, 1 < p < g < 00, 0 < a <1, % . % =aqa, ty €T,
©1 € Qp1ocs P2 € Qqi0c and (¢1, o) satisfies the condition
sup 77 ess inf ©1(to, 8) 57 < C pa(to, ), (4.7)

r<T<00 T<8s<00

where C' does not depend on 7. Then for p > 1, the operator M is bounded from LM;ZSI} (T) to
LMq{,igz} (T") and for p = 1, the operator M is bounded from LMl{igl}(F) to WLMq{i‘,fz,} (r).
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Proof. By Theorem 4.1 and Lemma 4.2 we get
1M A1l aggig) vy S 5002t )™ SuD T2 L2, 000,70
S st (67) 7 E ey o) = 1 Laggie) oy
if p € (1,00) and
1M Flly agfrgd oy < 59 pa(to,r) " jggf’lllf\lmr(tu,r))
N iglg e1(t,7) T T Il (ro,r)) = ||fHLM1{’t£1}(F),

ifp=1. Q.E.D.

From Theorem 4.2 we get (see [14]) the following

Corollary 4.1. Let I'" be a Carleson curve, 1 <p < g< o0, 0 < a <1, % — % = o and @1 € Qp,
o € (), satisfies the condition
sup 777 ess inf p1(t, s) sv < Calt,r), (4.8)

r<T<00 T<5<00

where C' does not depend on ¢ and r. Then for p > 1, the operator M is bounded from M, ., (")
to My ,,(I') and for p = 1, the operator M® is bounded from M, ., (I") to WM, ., (T).

For proving our main results, we need the following estimate.

Lemma 4.3. Let I" be a Carleson curve and I'g := I'(tg,70), then r§ < CMxp,(t) for every
tely.

Proof. 1t is well-known that
M f(t) < 27 MOf(2), (4.9)

where M?(f)(t) = sup | B~ [ [f(7)]dv(7).
5
Now let ¢t € Ty. By using (4.9), we get

Maxr, (t) > CMaxr,(t) > Csup |[B|7"*|BNTy|
B>t

> OTo| 1o N To| = Orf.

Q.E.D.
The following theorem is one of our main results.

Theorem 4.3. Let T be a Carleson curve, 0 < a <1, ty € T and p,q € [1,00).
1. If1<p<<and % = % — a, then the condition (4.7) is sufficient for the boundedness of

the operator M® from LM,EZSI} (T) to WLMq{igg (T'). Moreover, if 1 < p < 1, the condition (4.7) is
sufficient for the boundedness of the operator M from LMéﬁgf (T") to LM}fgz} (1).
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2. If the function ¢; € G, then the condition
r%p1(r) < Cea(r), (4.10)

for all » > 0, where C' > 0 does not depend r, is necessary for the boundedness of the operator M
from LMY (T) to WLMIH(T) and LML (D) to LML (T).
3. Let 1 <p< é and % = % —a. If o1 € Gp, then the condition (4.10) is necessary and

sufficient for the boundedness of the operator M from LM;E,’} (I) to WLMq{zig (T"). Moreover, if
1<p< %, then the condition (4.10) is necessary and sufficient for the boundedness of the operator

M® from LMS'(T) to LML) (D).
Proof. The first part of the theorem proved in Theorem 4.2.

We shall now prove the second part. Let Ty = I'(¢,70) and ¢t € T'y. By Lemma 4.3 we have
r§ < CM“xy, (7). Therefore, by Lemma 3.3 and Lemma 4.3

a -1 a « (PZ(TO)
7o S (W(T0) P [IM* X, lL,ro) S ©2(ro)IM*Xp, I,y S 02(ro)liXe, I, ., S o1(70)
or
g S ('02Er0§ for all 7o > 0 <= r{e1(ro) S wa(ro) for all 7o > 0.
P1{To

Since this is true for every ro > 0, we are done.
The third statement of the theorem follows from first and second parts of the theorem. q.E.p.

Remark 4.4. If we take ¢1(r) = r°7 and wa(r) = "% at Theorem 4.3, then condition(4.10) is
equivalent to 0 < A < 1 —ap and % = %, respectively. Therefore, we get Theorem B from Theorem
4.3.

4.2 Adams-Guliyev type result

The following Guliyev pointwise estimate plays a key role where we prove our main results.

Theorem 4.5. Let I' be a Carleson curve, 1 < p <00, 0 < o < 1 and f € L*(T). Then

MEF(t) S CrMF(E) +C sup s (| flln, 1,0 ds, (4.11)

r<s<oo
where C does not depend on f, ¢t € I and r > 0.
Proof. Write f = f1 + fa, where fi = fXy(, .., f2= X, . Then for all z € T’

(D(t,2r))
M f(2) S MO fi(z) + M fo(2).
For M®f1(t), following Hedberg’s trick (see for instance [27], p. 354), for all z € I' we obtain
|IMf1(2)] < Cir*Mf(z). For M fo(z) with z € T'(¢,r) from (4.4) we have

_1
M® fy(z) < 2supri+e / L N SC s (4.12)
T(t,s r<s<oo

s>r

which proves (4.11). Q.E.D.
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The following is a result of Adams-Guliyev type for the fractional integral on Carleson curves
(see, [14]).

Theorem 4.6. (Adams-Guliyev type result) Let I be a Carleson curve, 1 <p < ¢ < 00,0 < a < %
and let ¢ € (1, satisfy condition

sup 7 ' essinf o(t,8)s < Co(t,r), (4.13)
r<7T<00 T<s<00
and ) .
sup 7%(t,7)r < Cr~a-», (4.14)
r<17<00

where C' does not depend on t € I and r > 0. Then for p > 1, the operator M® is bounded from
M %(F) to M %(I’) and for p = 1, the operator Z¢ is bounded from M; ,(T") to WM %(I’)
p,p q,¥ q,p

)

Proof. Let 1 < p < oo and f € M (I'). By Theorem 4.5 the inequality (4.11) is valid. Then from
condition (4.14) and inequality (4.11) we get

MEF(t) S 7 MF () + sup $°75 || flln, (o))

SrOMEO 4 Sl @y sups® et s)r

P, P 8

<SrOMEO 7 [l @) (4.15)

PP

M
Hence choosing r = (W) for every t € ', we have

MEFE) S (M I T | -

PP

Hence the statement of the theorem follows in view of the boundedness of the maximal operator
M in M, ,(T") provided by Theorem 4.2, in virtue of condition (4.13).

1-2 _p _1 2
M fllar Ly S (1 L () Sup e(t,r) ar e ||MfH1qu(r(t,r))
a4,0 4 PP tel, r>0
1—P P
ST, o IMALE o S Il o
poP poP PP

ifl<p<qg<ooand

a 1_% -1 -1 %
IM*fllwar ) S ||fHM1#,(p) sup 090(@7”) i q”MfHWLl(r(t,r))

q,p 9 tel’, r>
1—1 1
S o 1ML, o S 1t
ifp=1<g<o0. Q.E.D.

The following theorem is one of our main results.
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Theorem 4.7. Let I' be a Carleson curve, 0 <a < 1,1 <p < g<ooand ¢ € Q.
1. If o(t,r) satisfy condition (4.13), then the condition (4.14) is sufficient for the boundedness of
the operator M® from M 1 (T') to WM 1(I'). Moreover, if 1 < p < g < 00, then the condition
PP X

(4.14) is sufficient for the boundedness of the operator M® from M 1(M)toM L(I).
@ 401
2. If ¢ € G, then the condition

rp(r)r < Croir, (4.16)
for all » > 0, where C' > 0 does not depend r, is necessary for the boundedness of the operator M“
from M ;( Yto WM 1(T')and from M 1(T')to M (D).
D P q,p 1 PP q,p 1
3. If ¢ € G, then the condition (4.16) is necessary and sufficient for the boundedness of the
operator M® from M 1 (T) to WM 1 (T"). Moreover, if 1 < p < ¢ < oo, then the condition (4.16)
p,pP -xi

is necessary and sufficient for the boundedness of the operator M from M %(I‘) to M %(F).
Py @

Proof. The first part of the theorem is a corollary of Theorem 4.6.
We shall now prove the second part. Let Ty = I'(¢g,70) and ¢t € T'y. By Lemma 4.3 we have
re < My, (t). Therefore, by Lemma 3.3 and Lemma 4.3 we have

1l e L
7o S (W(L0) " IM X Iz, ro) S e(ro) @ M Xe I 5 (o)

1
q,¢04

=

1 1
S o) lIxeg llar 1 @) S (o)
P

P,

or

ap

7‘8‘@(7"0)%7% S1forallrg >0« rgcp(ro)% Srg T

Since this is true for every t € I and rg > 0, we are done.
The third statement of the theorem follows from first and second parts of the theorem. q.e.p.

4.3 Adams-Gunawan type result

The following is a result of Adams-Gunawan type for the fractional integral on Carleson curves
(see, [17, 18]).

Theorem 4.8. (Adams-Gunawan type result). Let I’ be a Carleson curve, 0 < a < 1,1 <p<g¢g<
oo and ¢ € , satisfy condition (4.13) and

P
q

rp(t,r) + / s o(t, s)ds < Cop(t,r) (4.17)

where C does not depend on ¢t € I' and r > 0. Then for p > 1, the operator M is bounded from
M :1(T)toM 1(I') and for p =1, the operator M is bounded from M; ,(I") to WM 1 (T').
p,pP q,p 9 q,p9

Proof. Let 1 < p < oo and f € M, ,(T'). By Theorem 4.5 the inequality (4.11) is valid. Then from
condition (4.14) and inequality (4.11) we get

a1
MEf(t) S MS(t) + sup I £z, s

< rCMf(t) + Hf||Mp,¢(F) sgp s p(t, s). (4.18)
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Thus, by (4.17) and (4.18) we obtain

MO f(t) S min {o(t,r) s MEE), 0t )| Flla, o )
< supmin {rE T MF@), 75 1 ag, 00} = (MEE)E 17 o, (4.19)

>0

where we have used that the supremum is achieved when the minimum parts are balanced. From
Theorem 4.2 and (4.19), we get

‘d

o < Il M S Wl

P PP p@

M flln

a,¥

T)>

m»-A
1

ifl1<p<qg<ooand
IM*fllwar ) S ||f||M1 (F)I\MfIIMW(F) [FARYARRGOR
a,p 4

ifp=1<qg< 0. Q.E.D.
The following theorem is one of our main results.

Theorem 4.9. Let I' be a Carleson curve, 0 <a < 1,1 <p < g<ooand ¢ € Q.
1. If p(t, r) satisfy condition (4.13), then the condition (4.17) is sufficient for the boundedness
of the operator M® from M 1 (T') to M 1 (T'). Moreover, if 1 < p < g < oo, then the condition
PP X

(4.17) is sufficient for the boundednebs of the operator M¢ from M 1(T) to M 1 (D).
PP q,¢p 19
2. If ¢ € G, then the condition

rp(r)r < Cp(r)7, (4.20)
for all » > 0, where C' > 0 does not depend r, is necessary for the boundedness of the operator M“
from M ;( Yto WM 1(T )andfromM 1(D)toM 1(D).
(PP (pq P (pq

3. If ¢ € Gp, then the condition (4. 20) 1s necessary and sufficient for the boundedness of the
operator M* from M 1 (T')to WM 1 (T'). Moreover, if 1 < p < g < 00, then the condition (4.20)
pP q,p 9

P,
is necessary and sufficient for the boundedness of the operator M® from M 1 (T) to M %(I’).
PP 0

Proof. The first part of the theorem is a corollary of Theorem 4.8.
We shall now prove the second part. Let T'g = I'(¢tg,70) and ¢t € T'y. By Lemma 4.3 we have
ry < CMxr,(t). Therefore, by Lemma 3.3 and Lemma 4.3 we have

_1 « 1 a
5 S WT0)) T IM Xp, |z, mo) S #(ro) @ [Mxe, [l

a,¥P

T)

Q=

1 11
Sero)ilixe, v 4y Selro)a?
p,p P
or
rg‘cp(rg)%_% <1forall rg >0« rg‘cp(ro)% < go(ro)%.
Since this is true for every t € I and rq > 0, we are done.
The third statement of the theorem follows from first and second parts of the theorem. q.E.p.
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Remark 4 10. If we take (r) = 7*~1 at Theorem 4.7, then the condition (4.16) is equivalent to

% = 125 Therefore, from Theorem 4.7 we get Theorem C.

5

Remark 4.11. If we take ¢(r) = [r]?™" at Theorem 4.7, then the condition (4.16) is equivalent to

a< 11] — % < 1% Therefore, from Theorem 4.7 we get Theorem D.
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